
VILE
NSWC TR 89-170

00 SONAR PERFORMANCE ESTIMATION
" MODEL WITH SEISMO-ACOUSTIC EFFECTS

ON UNDERWATER SOUND PROPAGATION

IBY JUAN I. ARVELO. JR.

O UNDERWATER SYSTEMS DEPARTMENT

27 JUNE 1989

Approved for public release; distribution is unlimited.

DTIC
ELECTE

SJUN20 19M01J

NAVAL SURFACE WARFAREt CENTER

Dahigren, Virginia 22448-5000 0 Silver Spring, Maryland 20903-5000

9.o 06 18 238



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONAVAILABILITY OF REPORT

Approved for public release; distribution is
2b. DECLASSIFIC-ATIONWDOWNGPADING SCHEDULE ulmtd

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

NSWC TR 89-170
6a. NAME Of PERFORMING ORGANIZATION [b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applIcable)
Naval Surface Warfare Center U25

6c ADORESS (City, State, and ZIP Code) 7b ADDRE $S (City, State, and ZIP Code)

10901 New Hampshire Ave.
Silver Spring, MD 20903-5000

Ba. NAME O FUNDING.SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
OGANIZATION SIR aOpFUNaIN)

S,- ADDRESS (City. Stale, and ZIP Code) 10 SOURCE OF FUNDING NOS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO NO. NO.
61152N ROONO II

11. TITLE (include S*curty Ciassfication) Sonar Performance Estimation Model with Seismo-Acoustic Effects on Underwater
Sound Propagation

12. PERSONAL AUTHOR(S)

Arvelo, Juan I., Jr.
1. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT IYr.. Mo., Day) IS. PAGE COUNT

Technical Review FROM TO 1989,June, 27 166
16

. 
SUPPLEMENTARY NOTATION

17 COSATI CODES II. SUBJECT TERMS (Continue on reverse ,f necessary and identify by block number)

FIELD GROUP SUB GR Normal Mode Range-Dependent

20 01 Propagation Loss Bottom Elasticity
Low-Frequency Shear Waves

19. ABSTRACT (Continue on reverse if necessary and identify by blck number)

The correct estimation of the performance of any sonar system depends on the accurate computation of
the propagation loss of the signal. In underwater acoustics, low-frequency sound is less attenuated and the
easiest signal to detect at large distances.

Hence, the theory of normal modes has been modified to incorporate the effects of shear waves from the
elastic ocean floor. The effects of absorption have also been included as the imaginary component of the shear
and compressional wave numbers. The eigenvalues of the multilayered wave guide are searched in the
complex K-plan by the Levenberg-Marquardt minimization of the magnitude of the complex characteristic
equation. The liquid layers of the water column are represented by a linear wave number squared with depth
to better simulate the sound speed profile. It has been found that the compressional sound speed of an elastic
layer can also have a linear wave number squared and that the density in a liquid layer can be a (Cont.)

20. DISTRIBUTIONAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

X UNCLASSIFIEDIUNLIMITED SAME AS RPT DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22C OFFICE SYMBOL
(knClude Area Code)

Juan 1. Arvelo, Jr. (202) 394-3428 U25

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted _ _ NCLASSIFIED
All other editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

i



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

19. variable with depth and still obtain solvable wave equations.
A semi-infinite elastic bottom basement layer with compressional and shear absorption has been included

to the normal mode model and it has been found that the absorption causes the wave number spectrum of the
radiating modes to be inherently discrete, hence the number of radiating modes are drastically reduced.

The range dependence of the acoustic properties and the boundaries of the ocean have been included by a
modified version of the adiabatic normal mode theory. This newly developed version handles the shear wave
contribution and the fact that the eigenvalues and depth functions are complex.

The coherent transmission loss in the elastic layers is computed using the magnitude of the acoustic
intensity vector and its value in decibels is vastly used in determining the performance of active and passive
sonar systems.

Comparisons are made with experimental measurements of the transmission loss of underwater
explosives producing very good agreement for frequencies above 100 Hz. At lower frequencies, sound
penetrates deeper into the bottom where no data on the acoustic properties is available. Hence, this model is
used for inverse scattering predictions of the unknown properties.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

ii



NSWC TR 89-170

FOREWORD

This report incorporates the effects of shpar wave from the elastic ocean

floor to the normal mode transmission loss model. The possible range

dependence of the a~ouqti' properties of the ocean is modc'c& ,4u,, a mc"fcd

version of the adiabatic approximation for slow variations. This newly

developed model proves itself very useful for performance estimation of

acoustic mines and sonar systems that operate at low frequencies. This work
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CHAPTER 1

INTRODUCTION

An electromagnetic wave in vacuum travels a distance of nearly 300,000

kilometers in just one second. At the same time sound has only traveled about

340 meters. However, the electromagnetic wave attenuates very rapidly in

water Also, the attenuation coefficient of both waves varies significantly

with frequency, but low-frequency sound is the best form of underwater
2

radiation known to man.

An acoustic wave incident from the water to the solid sediments of the

bottom create a compressional (longitudinal) wave and a shear (transverse)
3-6

wave as shown by the use of the plane wave approximation of sound. This, so

called, birefraction phenomena is also observed with electromagnetic waves in

calcite and it is described by a medium with two indices of refraction. The

same phenomenon applies to seismo-acoustics.

With the use of explosive sound sources with a broad frequency band,

Pekeris 7 found that the effects of shear waves on the propagation of sound in

the water increases with decreasing depth of the water and with decreasing

frequency of the propagated sound. Since the attenuation coefficient of sound

is directly proportional to its frequency, this and the low-frequency

absorption caused by the shear waves makes the ocean wave guide a band-pass
8

filter of the sound emitted by the source.

If the acoustic properties of this ocean wave guide are well known, then

9,10
it is possible to calculate the optimum frequency of sound propagation. It

has been observed that sound with frequency below the optimum frequency highly

depends on the acoustic properties of the bottom sediments because of the

relatively small absorptive effects of low frequency sound, while the

transmission of sound with frequency greater than the optimum frequency

depends mostly on the acoustic properties of the water column.

Since the optimum frequency of most ocean environments is smaller than
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one kilohertz, an underwater acoustic model for the propagation of sound in

this frequency band is needed. This model must contain the effects of the

acoustic properties of the water column and the seismo-acoustic properties of
12

the bottom sediments.

The ray theory is highly satisfactory to predict and explain some

electromagnetic phenomena, and it is very useful in predicting the

transmission loss of high-frequency sound. However, this asymptotic

approximation cannot explain wave-type phenomena such as diffraction and

interference. 3 Pedersen1' pointed out that approximating the ocean's sound

speed profile by layers of constant sound speed gradients causes erroneous

transmission loss computations where acoustic interference occurs. However,

his transmission loss calculations are made using ray theory which is the

greater cause of errors.

The normal mode theory represents the exact solution to the perfect wave
15

guide and it is used mostly in low-frequency underwater sound predictions.

This model could also be used to predict the behavior of the transmitted

high-frequency sound with the expense of more computation time and memory.

With some assumptions and .approximations, the normal mode theory can be

expanded to include the effects of layers with linear acoustic properties,

shear waves from elastic layers, and range dependence of the ocean wave guide.

Various underwater acoustic models have been developed which treat some

of these properties. Each model has its virtues and limitations. For high-

frequency sound propagation the ray theory can handle all the mentioned

properties but we are interested in the low frequency region.

The parabolic equation (PE) method was originated by Frederick Tappert
16

in the late 70's where he approximated the wave equation in order to obtain a

parabolic differential equation which has the mathematical property of a

closed form solution which can be solved by calculating the transmission loss

while incrementing in range without iterations. This approximation Involves

neglecting the incoming solution of the wave equation and the use of the

large-range asymptotic approximation of the Hankel functions. This method was
17

adopted by Jensen and Kuperman to study the propagation of sound in an

up-slope wedge-shaped wave guide with a fluid-type bottom. Their results

showed that as the depth of the water gets shallower, the trapped modes reach

their cutoff frequency and become part of the continuous spectrum. Later, Ding

2
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Lee18,19 used an implicit finite-difference model to solve the parabolic
20

equation. McDaniel made comparisons between normal mode and the parabolic

approximation concluding that the latter displays errors in the computation of

the phase and group velocities. The limitations of the parabolic approximation

are that it applies only to sound propagation at small angles with respect to

the horizontal, it does not handle the horizontally reflected waves, and it is

incapable of handling the shear waves created in the elastic bottom
21,22 23-27layers. Many acousticians have included shear waves in their PE

models, but their theory is based on approximations and lacks the rigorous

derivation of elastic effects.

The fast field method developed by Schmidt2 8 is made to include the

elasticity of the bottom layers, but it may only be used in range-independent

environments.

Porter and Reiss 2 9 ,3 have also included the shear waves by incorporating

the impedance condition as a boundary condition to the normal mode

computations. However, this is also a range-independent model which uses the

plane-wave approximation to calculate the acoustic impedances.

The coupled normal mode method was implicitly originated by Allan

Pierce 3 1 ,3 2 in the mid 60s as an adiabatic-mode theory, with eigenray

calculations to estimate the coupling coefficients, to simplify the solution

to the propagation in a range-dependent environment. In this adiabatic mode

theory, he assumes an isovelocity wave guide and a weak coupling between the

natural modes of the wedge-like wave guide. He found that compressional waves

refract into the basement until they get completely attenuated. McDaniel
33-36

used the coupled wave equations to calculate the energy transferred between

normal modes as a result from bottom scattering of the ocean, and has shown

that randomly rough sea bed layering can increase the transmission loss

depending upon the degree of penetration of the acoustic field into the

sediment. Evans3 6 - 3 8 modeled the axisymmetric range-dependent medium as N

range-independent segments with a pressure-release false bottom suitably deep

to convert the continuous spectrum into a discrete form. The eigenvalues and

eigenfunctions of each range-independent segment was solved by taking into

account only the absorption of the basement layer to avoid the reflected

energy from the pressure-release false bottom. The group made up of by Graves,

Chwieroth, Miller, Nagl, Oberall, and Zarur 3 9 - 4 3 have used a similar method

3
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for solving the set of coupled range equations, but they included water layers

with linear pressure wave number squared. This gives a betters approximation

of the sound speed profile and the solution for each layer is given by Airy

functions. Comparisons of the PE model and the coupled normal mode model have

been made for some up-slope range-dependent wave guides44' 5 which gives the

best agreement if the environment slowly varies with range. However, it has

not been possible to define how slow the range dependent wave guide must be.

Even though the elastic effects were not incorporated in the coupled

normal mode method, there is no reason why this method cannot be applied to

the elastic wave equation. The objective of this report is to expand the

normal mode theory in order to predict the transmission loss of low-frequency

underwater sound with the effects of a depth-dependent sound speed in the

water column and the elastic effects of the solid sediments of the bottom.

Since some range dependence of the acoustic properties and the boundaries

between the layers has been experimentally observed, this property will be

included using an adiabatic approach assuming slowly range-dependent acoustic

properties. Another feature of the model to be presented here is that the

unrealistic false boundary used by Evans and Miller to convert the continuous

spectrum into a discrete form has been removed because the absorptive effects

of the elastic layers causes the radiating spectrum to be discrete.

The derivation of the wave equation and theory of normal modes in a

liquid wave guide is developed in the second chapter. Since the attenuation

coefficient of low-frequency sound in water is negligible compared to the loss

in the bottom elastic sediments, this property will not be included. However,

each layer of the horizontally stratified water column will have a constant

density and sound speed gradient.

In the next chapter, the general elastic wave equation will be derived

and solved by dividing the ocean floor into layers of constant acoustic

properties and separating the solution into a divergent (pressure) and a

rotational (shear) term. Each solid sediment will be described by a layer

thickness, a density, a compressional sound speed, a compressional attenuation

coefficient, a shear sound speed, and a shear attenuation coefficient.

The liquid-solid boundary conditions are derived in the next chapter in

order to match the solutions for each adjacent layer. The ocean wave guide has

a set of trapped modes which are evanescent in the bottom and a set of

4
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radiating modes which aie the major contributor to the sound propagation into

the bottom of the ocean and they become damped by absorption.

A complex characteristic equation is derived where the complex

elgenvalues can be found by searching for the complex zeros. The most

challenging part of this normal mode method is to find the best method of

determining these complex roots of the characteristic equation, since "There

are no good, general methods for solving systems of more than one nonlinear
46 46equation" 6 The Newton-Raphson Method for Nonlinear Systems of Equations and

the Muller Method with Deflation used in the subroutine "DZANLY" from the IMSL
47

Library were used to converge into the complex zeros, but severe Givergence

has been experienced for some of the roots. Therefore, the Levenberg-Marquardt

minimization algorithm for the magnitude of the complex determinant has been
48adopted for the uniform convergence to the nearest minima.

The adiabatic approximation for slowly range-dependent ocean wave guides

is finally used to obtain the range-dependent sound propagation model with the

effects of the elastic and absorptive properties of the ocean floor. With such

a model, it will be possible to better understand the various propagation

phenomena related to low-frequency sound and to predict the transmission loss

of sound in realistic ocean conditions.

5
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CHAPTER 2

DERIVATION OF THE WAVE EQUATION FOR FLUID LAYERS

The wave equation is a mathematical description of the reaction of the

media due to a disturbance from an external force caused by a source or

sources. The media can be in the state of gas, liquid, or a solid, and the

source may be electromagnetic or mechanical. In this chapter, the mechanical

(acoustic) propagation of the disturbance in a fluid medium is treated. The

fluid medium is the ocean environment modeled as a horizontally stratified

acoustic wave guide where the surface is treated as a pressure-release, or

soft, or resilient, boundary. The bottom is modeled as elastic layers in the

next chapter.

The disturbance created by the acoustic source may be expressed as a

change in the total pressure, relative to the undisturbed pressure, as a

function of the density fluctuation created by this external force. If the

density fluctuation is much smaller than the undisturbed density of the

environment, then the total disturbed pressure may be expanded in the

following Taylor series:

P(P) = P°+ (Bp (p-p) + i ( P2P) o+ ... (1)
-- 0

where the partial derivatives are constants determined for the adiabatic

compression and expansion of the fluid about its equilibrium density pOf the

equilibrium pressure is Po, and the instantaneous total density is p.

If the magnitude of the condensation is much smaller than unity, I.e.,

s (p - p)/P /P (2)

6
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then the first two terms in the Taylor expansion are of greatest contribution

and an acoustic pressure caused by the disturbance may be defined as

p = P(p) -P p~ (3)

where by thermodynamic arguments 4 9 it is found that, in an adiabatic media,

the sound speed is given by

2 - (4)
PO

and the adiabatic bulk modulus is given by

2

B = p0c (5)

therefore, the acoustic pressure is simplified to

p C2 p (6)

which is called the state equation.

An equation for the motion of the particles in the fluid is also

necessary for the proper environmental description. Consider an infinitesimal

cubic volume in the medium where the disturbance is taking place as shown in

Figure 1(a) for the one-dimensional derivation in cartesian coordinates.

Equating forces in a continuous medium gives

d dx
F + A [P(x) - P(x+dx)] = d-(p A dx dt (7)
external tat

7
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where the external force is the disturbance created by the sound source and

can be written in terms of a "force density" with the expression

F = X A dx (8)
external e

and using the definition of a derivative

8P _ P(x+dx)-P(x), (9)
ax dx

Equation (7) becomes

X - x L (VxP) + -(V P) (10)

which in three dimensions is given by

Xe- VP = V (VpV) (pv) (11)

where the density is a function of space and time, and the equation is in a

non-linear form. The total pressure is P and the total instantaneous particle

velocity is V. Dividing the instantaneous density, pressure, and particle

velocity into an undisturbed part and an acoustic part, Equation (11)

simplifies to the linear form

ev
VP + Po (12)

where the acoustic pressure is p and the particle velocity is V.

Since the fluid of interest is continuous throughout the infinitesimal

volume, Figure 1(b) will be helpful in deriving a continuity equation under

the argument that the mass moving into the volume, p(x) A V (x) dt, must be
x

the same as the mass coming out, p~x+dx) A V (x+dx) dt. There may be a change

8
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in mass inside the volume due to the compressibility of the fluid, L A dx dt,at
and there may exist a source of mass inside the volume represented by Q A dx

dt. Taking the definition of the derivative in Equation (9) gives

d A ap
j- (pV) A dx dt t A dx dt + Q A dx dt (13)

which is rewritten in three dimensions as

V (pV) + LP + Q = 0 (14)a t

or in a linearized form as

PV- + = 0 (15)
0 at

where Q = 0 when the source is external.

Substituting Equation (6) into Equation (15) for the acoustic density,

taking its partial derivative in time, and dropping the subscript 0 of the

undisturbed density of the medium, gives

S-2a 2 o- - 2

p -(v'v) + c - p = 0 (16)

and taking the divergence of Equation (12) yields

pV.(1/p Vp) + p TCV. ) = p V .(X/p) (17)

which subtracted from Equation (16) provides the inhomogeneous wave equation

pV.(1/p Vp) + k2p = p V*(1/p VU) (18)

9
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where the external force has been written in terms of an external potential

energy, time harmonic behavior has been assumed where k=w/c, and the

undisturbed density of the fluid is taken as space dependent. This equation

can also be written as

2 2 -1 = 2 -1 -

V p + kp -p (Vp).(Vp) VU-p (Vp).VU) (19)

which is simplified under the change of variables

p . V IT (20)

and

U = .v (21)

to obtain

V 2T + (k 2+K 2T = V 2 v + K 2V (22)

where
2 1 3 14P) 2

2- Yp_ V Vp) (23)

If the density is taken as a linear function of deptn, then Equation (23)

simplifies. However, the inhomogeneous equation to solve also has a depth

dependent wave number to worry about due to the depth dependence of the sound

speed. The changes in density with depth only occurs in the surface of the

Arctic Ocean where water has been solidified and at regions where the water

from rivers merge into the salty ocean waters. It is concluded that, for

simplicity, the ocean environment can be divided into horizontal layers with

constant density. It is understood that the bottom's solid sediments may have
50

layers of large density gradients. In this case, Equation (22) must be

solved. However, it is also possible to divide this layer into smaller

constant-density layers. Then Equation (18) becomes

V2p + k2p = V2U (24)

10
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which, in an unbounded medium, has a general homogeneous solution consisting

of an outgoing and an incoming wave, and an inhomogeneous solution caused by

the external force. Since a sound source in a fluid can only produce a scalar

potential (no shear waves), the curl of Equation (12) gives the property

Vxv = constant = vorticity (25)

the vorticity in the medium does not change. Therefore, if initially there

has been no rotational component of the particle velocity then the vorticity

will always be null and this particle velocity can be written in terms of a

velocity potential

v = V@ (26)

which substituted back into Equation (12) gives

a tp=-pat- (27)

and assuming harmonic time dependence yields

p -Zwp P (28)

or

v- (29)("p

Substitution of Equation (28) into Equation (24) provides the inhomogeneous

Helmholtz equation

12 + k2 _ V2 U (30)

which must be solved for the velocity potential. If the medium is bounded,

11
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the solution must satisfy the appropriate boundary conditions.

The conservation of energy is obtained by the scalar product of Equation

(12) with the particle velocity and substituting the continuity equation,

Equation (15), providing the law of conservation of energy:

+ : o(31)
+ V1I = 0 (1

where
2

1 2 p 2

is the acoustic energy density, and

I= p v (33)

is the acoustic energy flux or acoustic intensity in SI units of Watts per

square meter. Integrating Equation (31) throughout a volume in the fluid

medium provides the acoustic power

T T & dV = - .n dS (34)
V S

in terms of a closed surface integral around the volume where all the energy

is contained.

To obtain these important measurable quantities, it is necessary and

sufficient to solve Equation (30) for the velocity potential. To solve this

equation by separation of variables, it has been proven that the sound speed

must be a function of only one variable.1 This variable is taken to be the

vertical direction since temperature and the total pressure of the ocean

highly depends on depth. Based on experimental measurements, numerical fits

have been made to determine the sound speed and its attenuation coefficient in

the sea.

A simplified version of Wilson's formula for the sound speed as a

function of temperature, salinity, and depth is given by

12
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-3 )2 -2 -1 )2+ 1. S-5

c(z) = 1492.9 + 3(T-10) - 6x10 (T-10) - 4x10CT-lS) + 1.2(S-35) -

10-2(T-18)(S-35) + z/61 (35)

where the temperature T is in celsius, the salinity S is in parts per

thousand, and the depth z is in meters. The formula is accurate to 0.1 m/s
a 2for a temperature less than 200C and for depths less than 8.0 kilometers. A

sound speed profile, with its salinity and temperature profiles, is displayed

in Figure 2 as a function of depth in the Arctic Ocean. Note the variability

of the data which is caused by currents. Sound speeds in the oceans may vary

anywhere between 1400 m/s and 1600 m/s.

The attenuation coefficient has been fitted by Thorp as a function of

frequency, temperature, and pressure. A simplified version of the formula is

2/ ~2 2 1+2) 2
a(f) = 0.003 + 0.1f /(1+f ) + 40f /(4100+f ) + 0.000275f (36)

where f is the frequency in kilohertz, a is the attenuation coefficient in

decibels per kiloyard, and the relationship holds for frequencies greater than

ten hertz but lower than one megahertz. This attenuation coefficient is

included in the environmental properties as the imaginary part of the wave

number. However, it must be converted to units of nepers per meter. The

conversion is given by

a(nepers/meter) = a(dB/kyd) / [20 log(e)] / 914.4. (37)

Note that the attenuation coefficient Is directly proportional to the

frequency, therefore low frequency sound travels farther than its counterpart.

13
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CHAPTER 3

THE GENERAL ELASTIC WAVE EQUATION

Consider two infinitesimal volume elements, P and Q, at a distance Ar

from each other in an elastic medium. An external disturbance moves these

elements to the position P' and Q', respectively.

Strain, a dimensionless quantity, is defined as the change in position of

a point, say Q, with respect to a reference neighboring point, say P, divided

by the distance between these points, i.e. /Ar/. Therefore, expand each

component of the displacement in a Taylor series relative to the

displacement as follows:

x x x y+ x X AX + -Lz + ...Z (38)

and combine them to obtain the expansion,

+ (A' • ) + ... (39)

where the higher order terms are nonlinear and may be neglected if we assume

the maximum amplitude of the displacement vectors, and <, to be much smaller

than the wavelength of the disturbance (Hooke's law). This assumption is

valid at low frequencies and at diztances greater thAn a wavelength from the

external source.

Adding and subtracting the terms - Az and A Ay in Equation (38)
8x x n

gives,

= + 0 Az - 0 Ay + S Ax + S Ay + S Az + . (40)
x x y z xx X x xz

with

14
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I x(41)
2

and

where t stands for the transpose of the tensor matrix in the parenthesis and

where a identifies a tensor of second rank. Although there ire no units for-

strain, engineers sometimes use implied multiples, e.g. microinches/inch, a

6
number which is strain x 10 , or percent strain, a number which is strain x

2
10 . Where strain is displacement per unit of length in the direction of

displacement, it is referred to as a normal strain. Where the strain is

displacement per unit of length in a direction perpendicular to the direction

of displacement, it is referred to as a shear strain. In a three-dimensional

strain field the strain can be resolved into an isotropic component (or

volumetric strain), representing change in volume (and density) of an element,

and a deviatoric component, representing change in the shape of an element.

In vector form we get,

where is expressed in terms of the rotational and divergent behavior

relative to g.

In an elastic medium, the linearized Euler equation becomes,

+ p ? (44)

where P is the stress tensor, v = a/t is the particle velocity, p is the
undisturbed density of the medium, and ? is the external force that disturbs

the medium creating the acoustic field. Stress is force per unit area and may

be either normal stress produced by tensile, compressive forces acting

perpendicular to the faces of cubic elements, or shear stresses, produced by

tangential forces acting parallel to the surfaces of cubic elements. In a

three-dimensional stress field, the stress sy. .m can also be resolved into an

isotropic component (or bulk stress) and a deviatoric component. By

definition, this elastic medium has a rest state in which stresses and strains
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vanish. Linear elasticity means that stress is directly proportional to

strain. If the medium is also isotropic then the relationship between the

stress and strain tensors in terms of Lame constants is given by the

constitutive relation

- = G T+ 2 j (45)

where e = is the divergent component of the displacement vector, T is
the unit matrix, and the Lam6 constants are given by

X = p(c - 2 b ) (46)

and

2
W= p b ,  (47)

where c is the compressional sound speed of the medium and b is its shear

speed. Equations (45) through (47) are sufficient to characterize the linear,

isotropic, elastic medium. The absorptive nature of the medium is modeled by

making both sound speeds complex where the imaginary part of the sound speeds

is related to their respective attenuation coefficients. Since the speeds are

considered space dependent, the substitution of the stresses into Euler's

equation, Equation (44), gives

= ? + (A ) ) + 2 (p ), (48)
P-t

and substitution of Equations (41) and (42) provides the elastic wave equation

P 8 2 + (x + p±) VE) + e 1 + W ' + 2 .(49)

at 
2

which is a set of three coupled inhomogeneous differential equations where

each component of the solution depends on the others.

To uncouple this generalized elastic wave equation, it is sufficient to

eliminate the last term In the right-hand-side. This is done by assuming a

quasi space-independent shear modulus, p. From Equation (47) this means layers
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of constant shear speed and density, but note that no restriction is imposed

on the compressional speed.

In the case of solid (elastic) layers there is no external force present,

= 8, since the source is assumed to be in the water column. Furthermore,

layers of constant shear modulus are assumed. Under these conditions Equation

(49) simplifies to

p (A + p) E + e + A V2 . (50)

Since the displacement vector has been expanded into its rotational and

divergent part in Equation (43), the same expansion may be applied to the time

derivative of the displacement vector now defined as the particle velocity,

i.e.,

v + ex (51)

where the first term in the right-hand-side corresponds to the compressional

waves and the second term is the shear wave contribution to the acoustic

field. Substituting Equation (51) into Equation (50), and taking into

consideration the assumption of isodensity layers with constant shear speed,

gives

e [ p p - (A + 2A) V2 P ] e x [ P' - pX _ ]X, (52)

The divergence of this vector equation is satisfied if

(V2 + k 2 ) P = 0, (53a)

which is the compressional wave equation, and the rotational part is satisfied

with the shear wave equations

(V2 + K 2) X = 0, (53b)
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where k = w / c Is the compressional wave number, K = w / b is the shear wave

number, and harmonic time dependence is assumed.

For simplicity, the compressional and shear attenuation coefficients are

included as the imaginary part of both wave numbers instead of the sound

speeds. In this case, the complex compressional wave number is

k E w / c + i a, (54a)

where a is the compressional attenuation coefficient and the complex shear

wave number is

K =-w / b + z i , (54b)

where j3 is the constant shear attenuation coefficient.

For the case of axially symmetric propagation in cylindrical coordinates

we write

v =v (r,z) r + v (r,z) z (55)
r z

which will be equated to Equation (51) to obtain the components of the

particle velocity in terms of the potentials. However, to obtain range

independent boundary conditions the vector potential A must be written as the

curl of another vector potential, i.e.,

x (56)

which gives

v + 1 0~~ -V~ (57)

The physical meaning of this new vector potential is obvious when

calculating the stress matrix for the boundary conditions. The component @
r

corresponds to the SH-waves in seismology, e vanishes in an axially

symmetric medium, and z corresponds to the SV-waves. However, the stress
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tensor of the SH-wave has only off-diagonal elements, while the stress tensor

in the liquid layers has null off-diagonal elements. Therefore, a source in

the liquid layers is incapable of exciting SH-waves in the solid layers. In

consequence, we have r = 0 and the particle velocity is given by,

r

v= a + Oz ] r + [ a r r r a Y] z. (58)

The shear wave equations to be satisfied are now reduced to the scalar wave

equation,

(V + K) 0. (59)
z

Substituting Equations (59) into Equation (58), equating this result with

Equation (55), and assuming axially symmetric cylindrical coordinates provides

v - + (60a)

and

v =-q + a 2 (60b)z I aZ

for the components of the particle velocity.
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CHAPTER 4

SOLUTION OF THE WAVE EQUATION

The solution of the inhomogeneous compressional Helmholtz equation for

the liquid layers can be written as the sum of the homogeneous solution and

the particular (transient) solution. The generalized homogeneous solution can

be used as the solution of the homogeneous compressional wave equation in the

solid layers, Equation (53a). The solution of the homogeneous shear wave

equation, Equation (59), however, is different since the shear speed and

compressional speed of a sediment are usually unequal.

For simplicity and without loss of generality, we may solve the

inhomogeneous wave equation in the water column for the case of a point source

of unit source strength which, in the cylindrical coordinate system, becomes

-a r a + k2(z) P(r,z) = - 1 6(r) S(z - zo) (61)
T8r I J 'z 2  1 2nr

where the source is at r = 0, z = z , and the wave number is taken to be depth
0

dependent only.

A lengthy but elegant way to solve the wave equation is by the use of the

Fourier-Bessel transformation,

qCr,z) = u(k,z) J (kr) k dk, (62a)
0

and its inverse form,

u(k,z) = { q(r,z) Jo(kr) r dr, (62b)
0
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where the zeroth order Bessel functions satisfy the closure relation,

6(r - r') = r f Jo(kr) Jo(kr') k dk, (63)

and the Bessel equation,

k2r2 J"(kr) + kr J' (kr) + k r2 J (kr) = 0. (64)
0 0 0

Substitution of the above equations and the relation

-I r -i Jo(kr) = k J'(kr) + k 2r J(kr) = -k 2r J (kr) (65)
r~ r) 0 0

into Equation (61) converts the partial differential equation to the ordinary

differential equation

[d 2  ]6(z - z)
d 2 + k2 (z) - k2 J u(kz) 6 - 0 (66)

dz

where k2 is the continuous eigenvalue and u(k,z) is the continuous

eigenfunction of the inhomogeneous equation. In the case of a discrete wave

number spectrum the eigenequation becomes

[ 2 + k 2 (z) - k2 ] U(z) = 6(z -z (67)
dz 2  n n 2n

where n = 1, 2, 3, ..., N Is the mode index, k2 are the discrete eigenvalues
n

and u (z) are the discrete eigenfunctions. These eigenequations are similar ton

the Schr6dinger equation in quantum mechanics. A sound speed profile taken in
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the Arctic is shown in Figure 2. The sound speed as a function of depth is

contained in k 2(z) = Wo /c 2z) and the minimum sound speed is defined as cmmn

which represents a maximum wave number in the eigenequation k . Define the
max

"equivalent potential" as Vz) k2 - k2 (z) and the "equivalent eigenvalues"
max

as E = k2 - k 2, then the eigenequation becomes
n max n

u"(z) + [E - V(z)] u (z) = - 6(z - z )/2n (68)
n n n 0

which is equivalent to the time-independent Shr6dinger wave equation, where

the double prime stands for the second derivative with respect to the

argument, the minimum potential is zero, and there exists a maximum potential

which represents the threshold between the discrete and continuous spectrum.

This maximum potential is given by the determination of the sound speed in the

limit as z ---) c. The "propagating modes" are defined by the mode cutoff limit

E < w2/c2 and they may be "trapped modes" which are represented by a
n min

discrete eigenvalue, or they may be "radiating modes" which are represented by

the continuous spectrum. Note thAt the potential V(z) and the eigenvalues E
n

depend on the frequency of the source. Therefore, the number of discrete

eigenvalues vary with the frequency of the sound that is disturbing the

medium.

Since the ocean floor is not rigid nor soft, the energy spectrum will

contain trapped modes which are evanescent in the bottom layers with higher

sound speed and radiating modes which represent the energy that radiates into

the bottom sediments.

Evans 36-38 and Miller 42-44 have solved the purely real wave equation

which gave a discrete eigenvalue spectrum representing the trapped modes and a

continuous spectrum representing the radiating modes. The absorptive effects

of the fluid-type bottom was later incorporated as the imaginary part of the

eigenvalues using the first order perturbation approximation assuming small

absorptive effects. The continuous spectrum was forced to be discrete by

adding a deep false (pressure-release) boundary. Since this boundary caused

reflection of the incident sound, a very large attenuation coefficient must be

used in the basement layer, therefore making the first order perturbation

approximation an Invalid method.
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The continuous eigenvalue spectrum is the direct consequence of solving

the unrealistic purely real wave equation. If the absorption is incorporated

in the wave equation as the imaginary part of the wave number, then the

radiating modes will be part of a discrete spectrum. In this case, the

Helmholtz equation in Equation (67) becomes

d + k 2(z) - k2  u (z) = 0 (69)

dz 2  n

which is the homogeneous Helmholtz wave equation.

From the continuity of pressure in the liquid layers, which will be

discussed in the chapter on the boundary conditions, we shall set the function

Vp(z) u (z) as the orthonormal eigenfunctions,
n

f p(z) u (z) u (z) dz = a (70)

51

which also satisfies Sturm-Louville's Theorem. The closure relation is given

by

N

6(z - z) = p(z) un(z) u n(Zo), (71)

n=1

and the eigenfunction is solved by the method of separation of variables for

the individual modes which are later added in the form

N

u(k,z) = a(k) u (z) (72)
n n

n=1

where a (k) is to be determined. The inhomogeneous term is taken into account
n

if we substitute the homogeneous solution in the inhomogeneous equation. The

substitution gives
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2 N( - + k2 (z) - k2  a (k) u (z) = 20 u U(z) un(z) (73)

dz n=1 n=1

and substituting the homogeneous equation provides

2 2 p(Zo)]N [an W (k-2 k ) u (z u (z) = (74)

n=1

and, to satisfy the equation, the terms inside the brackets are set to zero

leading to the relation

p(z) un (Zo)
a (k) - 2752
n 271 k2 k k

n

which substituted into Equation (72) gives

N

p(z°) E un(Zo)u(z)

u(k,z) = 2 0 N k0 (76)
21T ... k 2-k2

n=1 n

and this substituted into Equation (66) gives the scalar potential

P(z°) t =foo J (kr) k dk

q(rz) = 2 N u (z) u (z) k2 k2  (77)

n=1 n

where the integral of this equation is better solved by contour integration

and it can be defined as
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(1(kr) + (2) (kr)

(r) = o H k 0 0 k dk. (78)

n

A property of the elgenvalues of the problem is that these usually have a

smaller imaginary component compared to the real part. Also, both parts of the

elgenvalues are positive because outgoing aaves from the source are used to

satisfy causality. To solve this complex integral, consider the contour

integration in the first quadrant of the complex k-plane as displayed in

Figure 3, where

H() (kr)
c k dk, I = 1,2,3k 2 _ k 2

C 11 n
Ii

(r) a (79)
ni H ( ) (kr)

c k dk, I = 4,5,6
k 2 _ k 2

21

and, by this definition, the integral to be solved is,

I Cr) -I [ I(r) + I 4 Cr) (80)Ini~r 2 n1~r +n4 •

By Jordan's lemma 4 9 we have

I2 Cr) = I Cr) = 0 (81)
n2 n5 81

also the integrals in Equation (79) show that

I (r) + I (r) = 0 (82)

n3 n6
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which means that we may write

r3 6 6

I(r) = 21)i(r) + I (r) ( - I=I Cr) (83)

where only I (r) and I (r) contribute to the sum.ni n4

Given that the singularities, k = k , are located in the upper contour we
n

get that

H(2)(r

6 H (kr)

ni (r) 
2  2 k dk =0 (84)oJ=4 n =c k k2

2

and

3 H° ((kr)
(r) = 0 k dk = n H(1) (k r) (85)

k 2 
-

2  n

1=1 C k-k n

by calculus of residues. Substitution of Equations (84) and (85) in Equation

(83) and this one into Equation (77) gives

N
O(r,z) = p(z o )  u (z) U (z) H()(k r) (86)

n ~z u 0 un H0 (kr

n=1

where the eigenfunctions u (z), and eigenvalues k , satisfy Equation (69).
n n

Note that the solution has been written using a separation of variables.

To solve the characteristic equation for the compressional waves,

Equation (69), the sound speed profile is divided into layers where the

squared of the index of refraction is a linear function of depth, i.e.,
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n 2(z) = a z + b (87)

where k (z) = w n (z), Figure 4 gives the geometry to be used for this3 3

mathematical model, and the subscript j is the layer number. To determine a3

and b , let the sound speed at the top of the layer to be c and that of the

bottom to be c Substituting into our linear equation gives

- a z + b , (88a)
C3J

and

1
- =a z J b, (Sb)

c
J+1

which solved for a and b results in3 J

2 2c - c
a -- 2J1 (89a)Dcc2

J D c 2c2
J J J+1

and

z (c2 - c2

b - 1 J + J+1 (89b)
J c2 D c2 c2

J+1 J 3 J +1

where D = z - z is the thickness of the layer. The index of refraction is3 1 3

given by n I/c3
' and if a' = (n2 - n2 1 )/D then we have

= 2[ n 2 + a (z- z) 2 + S (z - z) (90a)

where

S E (k - k2  )/D (90b)
3 3 +1 3
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and which substituted into the eigenequation gives

u (z ) - u (z) -0 (91)
dz[2 nJ J J J n nj

Define

(Z)-2/3 [ k2 + S (z - z) - k2 ] (92)nj (Z jJ J J n

and square its derivative to obtain

d 2  2/3 d2  (93)

dz J dj

which substituted into the new eigenequation gives

E- d 2 )1o.(94)
d2 nj I u j( n 0. (4
d nj

The solutions of this differential equation are the Bessel functions of order

1/3, or more commonly known as the Airy functions, i.e.,

u nj(<n) = anj Ai( n j ) + bnj Bi( nj). (95)

The behavior of the real part of these functions and their derivative is shown

in Figure 5 and some of their properties are given in Reference 54. Now that

the general solutions are found, we must match the solutions at each boundary

with the appropriate boundary conditions in order to find the unknown

coefficients and eigenvalues for each mode.

The attenuation coefficient in the water at low frequencies is negligibly
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small. Therefore, only the shear and compressional attenuation coefficients in

the elastic bottom layers are taken into consideration, and only the complex

elgenvalue will make the argument of the Airy functions complex.

Using, once more, the method of separation of variables for the solution

of the homogeneous shear Helmholtz equation we obtain the general form

N

(r,z) S A v (z) H (r) (96)T_ n n n

n=1

which substituted back in the shear wave equation leads to

1d(d) 1 d 2 2H -r dr r n v n dz 2 = constant (97)Hd dr n Vn dZ2 nn
n

which gives the ordinary differential equations,

d2 2

d- v (z) + [K2 - k 2 v (z) = 0, (98)

dz
2 n n n

and

r2d + r d + k 2r2 H (r) = 0. (99)
dz 2  rn

The solution of the first equation in the jth layer is

v (z) = c exp(j' z) + d exp(-z z) (100)nJ nJ nJ nJ nj

2_ 22

where 2 k - K and the solution can be oscillatory ( 2 < 0) ornJ n 2 nJ

exponential (7 > 0). By causality, only the radially outgoing solution of

the second equation must be used. The solution to this radial diffeiential

equation is the zeroth order Hankel function of the first kind, H (1) (k r).
0 n

Finally, since a and b are unknowns to be evaluated by the use of thenJ nj

boundary conditions, we are free to choose A Z/4 p(z ) u (z ) which, in the
n 0 0
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.thj layer, gives

N

@ (r,z) = p (z 0) unjz) Vnj (Z) H (k r. (101)

n=1

This expression simplifies the boundary conditions for the evaluation of the

unknown eigenvalues and amplitude of the eigenfunctions.
th th

Note that the n compressional eigenfunction and the n shear

eigenfunction are represented by the same eigenvalue k . The common eigenvalue
n

is necessary to satisfy the general elastic wave equation and to obtain

range-independent boundary conditions.

Now that the general solutions are found, these solutions will be matched

at each boundary with the appropriate boundary conditions in order to find the

unknown coefficients and eigenvalues for each mode.
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CHAPTER 5

THE BOUNDARY CONDITIONS

The ocean is modeled as a horizontally stratified wave guide with layers

of elastic properties simulating the ocean floor and liquid layers simulating

the water column. To match the solutions of adjacent layers, boundary

conditions are derived. In this chapter, the boundary conditions for all

possible interface are developed.

BOUNDARY BETWEEN LIQUID LAYERS

There are several ways of calculating the boundary conditions. The

boundary conditions for the interface between two fluid layers can be obtained

when an infinitesimal cylindrical volume is modeled across this boundary.

There are two boundary conditions to be satisfied at this interface.

Continuity of the Normal Particle Velocity

The volume integration of Equation (15) in this infinitesimal cylinder

provides the expression

p vn dA = - py P dA Ax (102)

where making Ax -- 0, the right hand side of the equation vanishes and the

surface integral yields the boundary condition

v2n n (103)
2 's 1 s
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which means that the normal component of the particle velocity is continuous

at the interface.
4

This boundary condition is expressed as v - n = continuous, and in the

case of horizontally stratified layers we may write n = z to obtain the

boundary condition,

v= a =continuous (104)
8 z

or using Equation (86) gives

du
n = continuous. (105)

Continuity of the Pressure

Assuming that there is no source in the infinitesimal volume of this

cylinder, the volume integration of Equation (12) gives

- p n dA = p Ta{ v dA Ax (106)

and letting Ax --4 0 yields the pressure boundary condition

1 1J P2 1. (107)

which means that the acoustic pressure at the interface is continuous.

Substituting Equation (86) into Equation (28) and this one into Equation (107)

gives

p u = continuous. (108)
n
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BOUNDARY BETWEEN LIQUID AND VACUUM

As a very good approximation, we may consider this boundary as pressure-

release for acoustic waves in the liquid layer. Therefore, the only boundary

condition is that the pressure vanishes at this boundary. Substituting

Equation (28) for the pressure, and Equation (86) for the scalar potential

gives

u= 0. (109)

0

The same boundary conditions are obtained using the particle velocity and

the stress tensor of an elastic layer by making the shear speed vanish. The

particle velocity is given from Equations (55) and (60). From Equations (42)

the strain tensor in an axially symmetric environment is given by

a8E ara-r- 0 z + r

S 0 0 0 (110)

gr +Or 0 agz

and using Equation (45) for the stress tensor in terms of the components of

the particle velocity gives
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av v av av 9v
(A+2A) I' + - + 0 r + +

Tr r azJ) _
v v Bv

iW P =0 A (- +6 r- + 0

av Iv CIv v avr 3 + 0 (A+2P) + ;k r +

j8z '5TrJa

(lii)

which is a Hermitian matrix as expected for being an observable quantity. Now

we can calculate the boundary condition for some other cases involving the

solid layers.

BOUNDARY BETWEEN LIQUID AND SOLID

In the case of liquid-solid boundaries we have three boundary conditions

to satisfy.

Continuity of the Normal Particle Velocity

Using the particle velocity vector in Equations (60) and (55) takes us to

the equation
a , Zo _ (Ps  + a 2 + 2 ) O z z( 1 2

Bz 4 Z 2 2_z Sz z - (112)
0 10 (LZ 2  b 0o

which by substituting Equations (89a), (91), and (94) gives

duns (113)
dz dz z 0  n n 0

where z stands for the depth of the boundary to be matched, and these

functions must be evaluated at this position. The subscript "1" stands for the

depth function in the liquid layer and "s" labels the depth function in the
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solid one.

Continuity of the P Component of Stress
zz

Extracting the P component of the stress matrix in both media gives
zz

r 8z r v vr
Lp ( - (A + 2A) + A (- + 2 ) (114)

0 0

where by the same equations as used before we obtain

dv

Pu 2  = Pu - 2p (k /ks) 2 ( uns+ dv n (115)1 Unli 0 sunslzo0 n uSs dz (15

The P Component of Stress Vanishesrz

From Equations (111), and the same equations used before, this boundary

condition becomes

du
2 -a- z + (2k - k ) v 0. (116)

n S

BOUNDARY BETWEEN VACUUM AND SOLID

For a free elastic layer we have two boundary conditions to satisfy.

These are,
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The P Component of Stress Vanishes
zz

dv
ul - 2(k /k )2  n~a~ 0. (117)Uns Iz0  n s Uns+ z O. 01=7

The P Component of Stress Vanishes
rz

du
2 ns + (2k - k 2 ) v 0. (118)

dz Iz 0 n S 10

BOUNDARY BETWEEN SOLID LAYERS

In this case we have two boundary conditions from the particle velocity

and two from the stress. These are the most general of all boundary

conditions given above and are stated as follows:

Continuity of the Normal Particle Velocity

du
+ k2 v = continuous (119)

dz n n

Continuity of the Taniential Particle Velocity

dv
U + continuous (120)dz
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Continuity of the P Component of Stress
ZZ

dv
Pu- 2pk/k)2  u + ) = continuous (121)

Continuity of the P Component of Stressrz

du1
__n+ (r 2k 2 - k2 ) Vn t 12

pb 2) v = continuous (122)

where it is emphasized that the axially symmetric cylindrical coordinate

system has been used and the equations are implicitly evaluated at the depth

of the boundary interface.
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CHAPTER 6

THE PROPAGATION AND MATCHING ALGORITHM

The elgenvalues that characterize the stratified ocean are obtained by

satisfying all the boundary conditions simultaneously. The algorithm developed

here consist in multiplying all the calculated propagation and matching

matrices to obtain the value of the compressional and shear eigenfunctions at

some interface where the chosen characteristic equation is to be evaluated. A

combination of the up-layer and down-layer evaluation of the eigenfunctions
th

and their derivatives will be used. At the j interface between two solid

layers, the four boundary conditions in Equations (119) through (122) are

written in matrix form as

~u / (z) U (z)
Unj-i( ) U5nj( .)

u' (z) u' (z ) (123)
nj-1 j = nj ( 3

v / (Z) V (z

nj-i .5 nj J5
V' (zj) v' ()
nj-i . nj nJ(

where

1 0 0 1

0 1 k 2  0

= n /K 2 0 (124)

.5. j
pjT 0 0 -p Q

and It is designated that Q, = 2 k / K and T = 1 - Q . For up-layer
.5n j .5.

matching of the eigenfunctions the matrix 8 in Equation (123) is taken to
j-i

the other side and multiplied by B to obtain the matching matrix
J
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M 0 0 M
11 14

0 M M 0
-1 S = 22 23 (125)

j j-1 1 0 M M 0
32 33

M 0 0 M
41 44'

where

Ml= M33= Q J_+ T R , (126a)

M 14= Q J-1- QJ R , (126b)

M22 =44 = TJ-1 + QJ-1 S , (126c)

M41 =T J- T R, (126d)

M = M k2 , (126e)
23 41 n

and

M = 2 (1 - S )/K2 (126f)
32 J J-1

are the elements, and the ratio of densities and shear moduli are defined as

RJ = PJ/P - and S]= J/J-1"

At the liquid-liquid interface the boundary conditions are reduced to

two, and the up-layer matching matrix becomes

0 1
- (127)

at the jth Interface.

These matching matrices simply provide the eigenfunctions and their

derivatives at the bottom of the J-1 layer when the values at the top of the

Jth layer are known. Another matrix is needed to propagate the solution from

the bottom to the top of the jth layer.

When the values at the bottom of the jth layer has been determined, the

solution of the wave equations can be used to propagate the solution to the
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top of this layer. To create this propagation matrix, Equations (95) and (100)

are rewritten in the matrix form

uni (z)
u (z)

v (z)
n j

V' (Z)

Ait< n (z)] Pi[1<n (z)) 0 0 a n

-S /3Ai'[ (z)] -S 1/3Bi'[ (z)) 0 0 b
j nj j n j nj

0 0 exp(iTn ) exp(-Zn j ) c

0 0 'n jexp4(Zn) -zn jexp(-i nj) d nJ

(128)

where the banded 4x4 matrix means that the shear and compressional

eigenfunctions are propagated independently from each other even though they

depend on each other in the matching process. Therefore, the propagation

matrix can be divided into a 2x2 compressional propagation matrix and a 2x2

shear propagation matrix. Inverting and evaluating the compressional
.th

propagation matrix at the bottom of the j layer gives

a ir Bi'L (z )] iS 1/3 Bi [ (z )I1 "ru (z
njI =nj J+1 jnj J+1 n Jj+1

S -T Ai'[ (z )] -t 1 3Ai[ n(z ) U' ( (129)[nj) nj J 1 i J J+1 j n J +J 1

where the Wronskian relationship
5 4

Bi'(<) Ai(<) -Bi(<) Ai'(<) = 1/n (130)

has been used and the primes denote the derivative with respect to the

argument. For the shear propagation matrix we obtain

c~ (j1/2 exp(-Zz n z J) -Z~ exp(-iy n z J1) /(2'Y n j (v nj(z ))
nJd 1 /2 exp UZj.) z expCZn z )/(2z ) v' (z )
n i njJ+ I n J 1 nJ [ n3J + 1

(131)
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where substituting the unknown coefficients back into Equation (128) and
.h

evaluating it at the top of the j layer gives

Un (z C C1 2  0 0 Un (z

u(z) = 2  0 0 u' (z )(1)
nnJ J1 (132)

njj 0 0 33 34 nj (zj+1)

v' (z 0 0 C C v' (z
n j 43 44 nJ J+1

where the elements of the compressional eigenfunction are given by

C 11: = it Ai[ nj(z ) i ' [nj ( zJ+1) - Ai'[ [nj (z j+l)] Bi[ nj(zj) ]

(133a)

C12= n [ Ai( n(z)) Bi( C zj )) - Ai (< Z )) Bi(Cn(z )) ]/ 1 /3

(133b)

C2= w [ Ai' (z )) Bi' (Z)) - Ai' (Cn(Z)) Bi'(< (z )) ]s 1 / 3

(133c)

and

C 22= IT [ Ai[< nj (z J+1 ) Bi'[ [nj (zj) - Ai'[ [nj ( z )] Bi[< ni(z J+1)

(133d)

and the elements for the shear eigenfunction are given by

C = C = cos(? D ) (134a)33 44 nj J

-1

C = -n sin(Tn D ) (134b)
34 n J n j

and

C 43= nJ sin(n D ) (134c)

th

where D = z - z is the thickness of the j layer and T is given afterJ J+1 J n

Equation (100). For trapped compressional modes, only the exponentially
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decaying solution of the Airy functions must be used since there is no

acoustic source in the bottom. If Ai( ) is evaluated at the exponentially

decaying part of the function, then Bi(C) cannot be evaluated simultaneously

because it is exponentially increasing producing a floating point overflow in

the computer. Therefore, an Airy function subroutine that can calculate one of

the solutions, instead of both of them simultaneously, must be used Another

serious complication that occurs with the evaluation of Equations (133) is the

numerically unstable result when the subtraction of large but very close

numbers is performed. In the case where 1<1 >> 10 and Arg n it the Airy

functions have the asymptotic forms,

BiC ) -Z i Ai( ) (135a)

and

Bi' (i - Ai' ( )(135b)

which causes precision problems when evaluating the Wronskian and the elements

of the propagation matrix. These same propagation matrix coefficients have

been encountered by Gordon 5 5 ,5 6 in the area of quantum mechanics and he solved

the problem by direct substitution of the series solutions for the Airy

functions and its derivatives in Equations (133) to factor out the exponential

or sinusoidal functions. However, these where performed under the assumption

of purely real arguments of the Airy functions and the series solutions used

do not apply to complex arguments. A similar substitution and cancellation

technique is obtained by evaluating the numerically stable independent Airy

results given by Schulten, Anderson, and Gordon 57 to avoid floating point

overflow and other precision problems.

In the water layers the propagation relationship reduces to

(z C1 121 n l (1
Su'(z C C U (z (136)
nJ Jl 21 22] nJ J+1

where the unknowns are given in Equations (133).

In the models to be described next, it is further assumed that the

acoustic properties of each elastic layer are constant. This Is done for

simplicity and with the knowledge that it is not easy to determine all the
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fine-structure properties of the bottom sediments experimentally, therefore
58,59

the bottom is usually described as layers of constant properties.

CASE A. RIGID FALSE BOTTOM MODEL

The rigid bottom interface is at j=F in Figure 4, the water-bottom

interface is at j=J, and the soft surface of the ocean is at j=1. The rigid

"false" bottom interface is artificially incorporated only to convert a

continuous wave number spectrum into a discrete form. Therefore, the trapped

modes will be treated as if the rigid bottom does not exist. Each wator layer

has two unknowns to be determined, and each solid layer has four. The rigid

bottom has null tangential and normal particle velocity. Therefore, the

boundary conditions for the radiating modes at the "false" bottom interface

are

u (z ) + V' (zF) = 0 (137a)
nFF nF-1 F

and

u' (z) + v (z ) = 0 (137b)
nF-1 n nF-1

which have four unknowns for any trial value E of the eigenvalue squared k 2
n n

These equations are conveniently written in the matrix form

U (z) 0 -1

u' (z) - 0 v (z (3
nF-1 F n nF-1 F (138)

nF-(z F 0 I (z)
V' (z) 0 1 nF-1 F

nF-I F

where the special 4x2 matching matrix is represented by 'F

This set of equations is substituted into the up-layer propagation matrix

for the F-I layer to obtain

43



NSWC TR 89-170

uF- (z FI( nnFI F-I v (zF)(

u' (I 
nF-i F-i C H -.F (139)

v (z ) F-I z

nF-i F-I

where both eigenfunctions and their derivatives are still to be determined.

This new recurrence relationship is substituted into the up-layer matching

matrix for the F-I solid-solid boundary to obtain the new relationship

u-2 (z_ 1F-i

* (z )-I'nF-I (z'F
nF-2 F-i = H C H 1 vI (zI (140)VnF_(ZF_) F-I F-I F nF-1

VnF-2 (zF-i F
v I (z
nF-2 F-I

and by the same token, the matching and propagating matrices for the solid

layers are multiplied to each other until the water-bottom interface is

reached with the relationship

u (z)

U, (z ) CC rVnF-I (F] 4vn J = C j + C J+ - C F- H. / ( (141)
njZ J J+i J..iF- F-i F v' (Z)

v (z J) nF-I F

V' (z
nJ J

The multiplication of the propagating and matching matrices in the solid

layers is now given by the 4x2 matrix

E = H J C . . . H C H (142)J J~i J+i F-i F-I F

Next is a use of the liquid-solid boundary conditions to evaluate the

compressional etgenfunction at the water column. The three boundary conditions

are

U (z) = (z + n vnj (z ) (143a)

P'lun1 (zj) = P, T3 ui (z,) - p, Q, V' (z,) (143b)
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and

22 u' (zj) + (2 En- K ) (ZJ) = 0 (143c)
nJ J n J nJ J

where the first two equations are needed to evaluate the compressional

eigenfunction in the liquid layer, and the third condition will be used as the

characteristic equation of the environment.

The first two equations are rewritten in matrix form as

S (z1  T/R 0 0 -Q/Rj (144)

U ' (z j 0 1 n  0 (Jj)

V' (zj
nJ, J

where the 2x4 special matching matrix will be known as Hj. Substituting

Equations (137) into this set of equations gives

u nJI(z VnFI(Z F )
I= E nF1 F (145)

( z) v' (z
In J-1 J )nF-I F

Now comes the propagation and matching in the liquid layers. The method

is the same as for the solid layers, except that now the matrices to multiply

are 2x2. After propagating and matching up to the surface it is found that

u(z (z f
UI(Z) = 1 2 2 3 3 " J-1 CJ 1  % E v' (z) (146)

where the final product of all the propagation and matching matrices is

defined as the 2x2 matrix

F S C H C H C ... H C H E. (147)
1 2 2 3 3 J-1 J-1 J

The pressure-release boundary condition of the surface (j=l) gives

un1(zl= 0) = 0 and the derivative of the eigenfunction at the surface will be

arbitrarily set to unity since the normalization condition will take care of

its proper evaluation. This gives
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= F n(148)
1 v/ _(z )

where inverting F gives

v nF(Z) = (F 22- F 2(F 21/F)) -1  (149a)

and

V/ ) = (F - F (F22F )) . (149b)
nF1F 21 11 22 12

A final substitution of the shear eigenfunctions at the rigid bottom

interface into Equation (141) gives the two necessary values to be substituted

into the chosen characteristic equation, Equation (143c). The trial value En

is the square of an eigenvalue k when the complex characteristic equation (orn

determinant) is null, i.e.,

V (k ) 2 u' (zj) + (2 k2 - K ) Vn(Z J ) = 0. (150)
n nJ J n J J

Note that the objective is to calculate only u' (z ) and vj (z ). Therefore,

there is no need to calculate the eigenfunctions at the other interfaces to

find the eigenvalues of the problem. This same method of matrix multiplication

is also used to evaluate the eigenfunctions at all the interfaces for the

normalization calculation described in the next chapter.

CASE B. SEMI-INFINITE BASEMENT MODEL

This model is used for the trapped modes and the radiating modes

undiscriminatingly. The trapped modes have the property that they are

exponentially decreasing with depth in an isovelocity layer and the radiating

modes represent out-going propagating waves that oscillate towards infinity

without reflections but with absorption which causes its damping. Both,

compressional and shear, eigenfunctions can be trapped or radiating.

Therefore, it is no longer appropriate to refer to a mode as simply trapped or

radiating. In fact, there are four mode classifications. The.e is the most
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common mode where the compressional eigenfunction is trapped and the shear

eigenfunction is radiating. This type of mode will be labeled a "T-R mode,"

where the first letter always refers to the compressional function. The

compressional eigenfunction of the T-R mode in the semi-infinite layer is

described by the exponential function

UnF1 (z) = a nFlexp(-a F-1z) (151a)

and

u' (Z) =- (nF-u (Z) (151b)

wherennF_ 1 = k
2 - k2 F -  The shear eigenfunction is radiating without

reflections, i.e.,

VnF_1(Z) = CnF1 exp(- znF-lZ ) (151c)

and

v' (z) =" v z). (151d)
nF-1 nF-1 nF-i

Now the eigenfunctions at the top of the basement layer are given by

unF- (z ) 1 0

u' (z ) 0u (znF-1 F-1 -1nF-1 nF-1 F-1 (152)
v v.(z
nF-i F-i 0 1 V (z )
v (z -) n-i F-
n-i F-i 0 4TnF-1

which gives the values at the top of the basement layer. Lets define the

special 4x2 propagating matrix In Equation (152) as C and only two of itsF-1

elements must be changed if the mode becomes a T-T, R-T, or R-R mode. To

obtain the values at the bottom of the F-2 layer, we multiply by the matching

matrix at this interface which gives

nF-2 F-1 (
u / (z )uV (znV-2 F-1 M F-[ C i-- F-1 I (153)
nF-2 FF-i F-

In(z nF- zF-1I
nF-2 F-1
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which corresponds to Equation (140) in the previous matrix multiplication

method. By the same matching and propagating algorithm the values at the

surface of the ocean wave guide are reached with the relationship

F1 F-i1 (154)
1 vv (z _)

where the 2x2 matrix

F = C 1 2 C . . . M C . . . [I C (155)1 2 2 J J F-i F-i

is inverted to obtain unFI (z F) and v I(z FI). After calculating their

derivatives using Equations (151b) and (151d), the solution is propagated up

to the top of the Jth layer to obtain u' (z ) and vn (z ) which are nf-eded to
nJ .3 .3

calculate the characteristic equation, Equation (150). This method requires

one loop of matrix multiplications in the solid to obtain the matrix E in

Equation (142), which is saved for later use, but is also used to keep

multiplying matrices in the liquid layers.

After evaluating the eigenvalue, the eigenfunction may be calculated by

down-layer multiplication of propagation and matching matrices. For this

purpose, the matrices are slightly different from the up-layer ones. The

elements of the matching matrix in Equation (125) for down-layer matching of

the eigenfunctions are given by

M M QJI + T / R (156a)11l 33 .2+1l'

M14 =Q Q+ Q / R (156b)

M 22 = M44 = T J+I + Q J*I / Sj I' (156c)

M = T +- T /R (156d)

41 J+1 J4

48



N3WC TR 89-170

M =M k , (156e)
23 41 n

and

4 2
M = 2 (1 - 1 / S / K (156f)

32 J+1 J+"

The arrows have been include to emphasize the down-layer propagation and

matching matrices and to distinguLsh them from the up-layer ones. The

compressional elements of the down-layer propagating matrix in Equation (132)

are given by

4

C n [ Ai[ nj(z ) Bi' [Cnj(Zj) - Ai' [Cn(z ) Bi[ n (Zj 1 ) ],

(157a)

4-, 1/3
C12 T [ Ai(C (z J1)) BiC(njz(z) - Ai( n(z )) Bi(C njC ( ) z/S i

(157b)

14,1/

C21= T [ Ai' (CnJ(z i i' nj(Z J+) - C nj (zj+1 B'' njZj)( IJSi

(157c)

and
4

C22 [ Ai[C (z )] Bi' [C (z -Ai' [ Cz Bi[C (z ].
22nJ j nj J+I nj J+I ni j

(157d)

The shear elements of the down-layer propagating matrix are given by

4 4
C33 C44 =cos(Inj D) (158a)

4- -1
C3= Tn sin(n D) (158b)

34 nj ni J
and

41 C 3 isin(7 ).D (158c)

However, to obtain the elgenfunctions, the zeros of the complex

characteristic equation, Equation (150), must be found. The most optimum

method for finding the complex zeros may never be known 4 6 since many
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challenging environmental conditions can be encountered. Examples are

secondary sound channels and surface ducts which cause degenerate eigenvalues

with irregular spacing and some of these eigenvalues may be too close to each

other for the limited precision of a computer. Ellis has tackled a similar

problem with a two-ended shooting technique, but the model incorporates the

effects of shear wave and the attenuation coefficients as an approximation for

small values, he does not take into account the radiating modes, and does not

search for the eigenvalues in the complex plane. However, a simple algorithm

may be obtained after analyzing the behavior of Equation (150) for a

simplistic ocean environment and it may be eventually improved as we encounter

more difficult situations.

The complex determinant in Equation (150) was calculated as a function of

the complex trail wave number for the very simple case of a water column over

a semi-infinite bottom layer. To start with a very simple case, the bottom is

a fluid layer with the acoustic properties in the second row of Table 1. These
1 7 

- i t a dfluid properties are obtained from Jensen , the properties of clay-silt, sand,
61

and basalt are taken from the paper by Werby and Tango, and the parameters

for chalk are given by Ellis . The first case is the fluid bottom with a water

column 200.0 meters deep and a constant sound speed of 1500.0 m/s. The bottom

is fluid-like because of the very small shear speed (1.0 m/s) and the

relatively large shear attenuation coefficient to rapidly damp-out the

remaining shear contribution. The frequency of the sound is 25.0 Hz and all

other bottom properties are given in Table 1.

The contour plot of the complex determinant is displayed in Figure 6. The

dash curves represent the contour where the real part of the determinant is

zero, and the solid curves represent the contour where the imaginary part of

the determinant is zero. Since both components of Equation (150) must be zero

simultaneously, then the complex eigenvalues are given by the points where

both curves intersect. Note that these curves are perpendicular at the point

of intersection, therefore Equation (150) is an analytic equation that

satisfies Cauchy-Riemann relations. This simplifies the Newton-Raphson method

for converging into the complex zeros. The real part of the determinant along

the real axis is plotted in Figure 7 where the number of eigenvalues is equal

to the number of zeros of this curve. The maximum trail wave number is given

by the minimum speed in the water column and a general behavior of this curve
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is that it tends to infinity as the wave number approaches zero. A search for

the change in the sign of this curve will be used to obtain an initial

estimate of the eigenvalue. Nagl 4 made a detailed study of the behavior of

the purely real eigenvalues along the real axis and derived the useful

approximation

Ak(n) a (n n c )/(2 f z 2 (159)

which gives the approximate spacing of the eigenvalues as a function of the

mode number n, the frequency f, the depth of the ocean floor, and the minimum

sound speed in the water column. This equation is used to establish the step

size in the search for the first couple of eigenvalues. The spacing between

the previous two eigenvalues is later used to establish the step size for the

next eigenvalues.

After these zeros are found, we vary the imaginary part of the trail wave

number in order to follow the dash curves in Figure 6 until a change in sign

of the imaginary part of the determinant is detected. Newton-Raphson4 6 method

was tried to pin-down the complex eigenvalues in double precision accuracy but

there where times when it converged to unrealistic values. This method was

also used by Otsubo6 2 for relatively simple ocean environments without the

effects of shear waves but we have discarded it as "not uniformly convergent."
48

A more uniformly convergent method is described by Morris where, instead of

searching for the complex zeros of Equation (150), we search for the local

minima of the magnitude of the determinant. These minima are located exactly

where the complex eigenvalues are, the method uniformly converges to the local

minima, but the convergence is slightly slower than the Newton-Raphson

method. Since the uniform convergence is more important, this is the method

used in this model.

A plot of the elgenvalues in the complex k-plane is given in Figure 8

where the three trapped modes have eigenvalues with negligible Imaginary

parts, and the four radiating modes have eigenvalues with real parts smaller

than 0.09 1/m. Note that the radiating eigenvalues have such a large imaginary

part that they get rapidly attenuated as they propagate in range therefore

contributing only to the intensity near the source.

If a rigid false boundary is placed at a depth of 1200.0 meters?3 the
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radiating spectrum becomes the one displayed in Figure 9, which agrees with

Miller's perturbative approximation. The real part of the minima corresponds

to the four radiating eigenvalues in Figure 8, which means that the rigid

false bottom method is trying to give preference to the true radiating

eigenvalues over the "pseudo-eigenvalues" by giving the latter a larger

imaginary part.

The trapped and radiating eigenvalues are not unique in the complex wave

number spectrum. Surface waves may also be incorporated in this ocean model.

The surface wave produced at a solid-vacuum interface is called a Rayleigh

wave. In the case of a liquid-solid interface the surface wave is called a

Generalized Rayleigh wave, while the solid-solid surface wave is called a

Stoneley wave. These waves satisfy the wave equation and the boundary

conditions but they decay exponentially in both directions very rapidly.

Therefore surface waves are not expected to be of extremely high importance

when the receiver is greater than a wavelength away from interface, even

though they may be added in these transmission loss calculations without
63,64

complications.

The spherical waves diverging from the source may be expressed as the

infinite summation of plane waves. Each plane wave hits the liquid-solid

boundary and each solid-solid interface of the wave guide at a different angle

of incidence. Some of them will have an angle of incidence greater or equal to

the compressional critical angle and/or the shear critical angle of an elastic

layer. Under this condition, total internal reflection occurs and the wave

propagates parallel to the interface. This wave is also called a surface wave

since its amplitude decays exponentially with the normal distance from the

interface along which the propagation occurs.

Lateral waves propagate at the solid side of the liquid-solid interface

and they are automatically incorporated in the model when the trapped and

radiating modes are used. When a spherical wave from a nearby source hits the

liquid-solid interface, two lateral waves are created which will propagate in

the elastic layer and parallel to the interface. One is caused by the shear
65

critical angle of incidence and the other is caused by the compressional one.

As they propagate, they reradiate back into the liquid layer causing the

Schmidt head wave.
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CHAPTER 7

THE NORMALIZATION COEFFICIENT

The depth functions are complete and orthogonal. However, they are not

necessarily normalized since the wave equation is satisfied regardless of the

constant in front of the solution. Remember that the derivative of the

eigenfunction at the surface has been set to unity under the condition that

the normalization constant would take care of this last unknown. For the

transmission loss calculation in the next chapter, the summation of normalized

eigenfunctions is needed to obtain the proper contribution of each mode.

The normalization constant for each mode is given by

F-i

N = Z N (160a)
n nJ

J=i

where N is the contribution of the jth layer to the n t h mode, i.e.,nj

ZJ+1

Nnj = p zjunj(z) unj(z) dz. (160b)

The normalization coefficient is in general a complex number, and the

eigenfunctions at all the interfaces are known after the eigenvalues are

found.

In this ocean model, the water layers have variable sound speed and

negligible attenuation coefficient compared to the absorption of the bottom

layers. However, these elastic layers of the bottom have constant acoustic

properties. Therefore, the normalization calculation for both types of layers

is different.

The water layers are defined to be the ones where 1 s j < J. Gordon's

formulas s5 provide the analytical infporpftrn of a linear combination of Airy
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functions. The formulas to use are

f Ata(z+b)] B[a(z+b)] dz = (z+b)AB - A'B'/a (161a)

and
A'B -AB'

A[a(z+bI)] B[a(z+b 2)] dz = 2 (161b)
a (b - b)

1 2
where

A[a(z+b )]=a Ai[a(z+b )]+b Bi[a(z+b )] (162a)
1 1 1 1 1

and

B[a(z+b2 )a 2Ai[a(z+b2 )+b 2Bi [a(z+b 2 )  (162b)

represent any linear combination of Airy functions.

Equation (161a) relates to Equation (160b) where A = B. In this case,

N[(z+ ) u 2  n)+u' 2 (nJ )/S 1 /3] Z J+ (163)
nJj j Z

where

& C k - k ) / S - z (164)
nJ J n J J

Note that, even if the attenuation coefficient of the water column is

neglected, the argument of the Airy functj,-n is complex because of the complex

eigenvalue. Therefore, the absorption of Khe bottom layers are affecting the

propagation of sound in the water column

The calculation of the normalization contribution in the elastic layers

is simplified by the assumption of sediments with constant acoustic

properties, but a distinction must be made for the case where the function

decays exponentially with depth (trapped mode) or if it oscillates (radiating

mode).

In the case of a trapped mode, the compressional elgenfunction in the jth

layer is given by

UCnjz) = u nj(z j ) exp [-Rnj(z - zi] (165)
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2 =2 2
for z ! z s z and where r = k - k Substituted into Equation (160b)J J+1 nJ n J
gives the solution

N U 2 (z) {1 - exp[-2 Dj inJ] / [2 -a (166)Nni Pl Unl J

where D = z - z is the thickness of the elastic layer.
J J+1 J

The compressional eigenfunction to use for the oscillatory depth function

in the jth layer is

-1

u (z) = u (z ) cos[n (z-z )) + u' (z ) 7n- sin[7n (z-z )] (167)
njnJ j nj j i nj j .

and the Equation (160b) becomes

sin(2 D si)-1
D 2

= + ,2 n2[ D + s n j  + p U j nj
ni nj nj nJJ2 j 4 7n n j u ( n T)J

(168)

where the argument of the eigenfunction has been omitted for simplicity and

where J s j < F.

Finally, the normalized eigenfunctions and their derivatives are given by

12
u (z) U (z) / N"/  (169a)nj nj n

1/2U' (z) U' (z) / N , (169b)
nj nj n

1/2v (z) v (z) / N , (169c)nJ nJ n
and

1/2v' (z) E v' (z) / N . (169d)
nJ nJ n

After all the eigenvalues and normalized eigenfunctions are found, it is

next to calculate the transmission loss of sound in this ocean wave guide.
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CHAPTER 8

THE TRANSMISSION LOSS

Any massive object that vibrates radiates acoustic energy. Power is the

time rate at which energy is radiated and intensity is defined as the rate of

energy flow through a unit area. The intensity is a vector quantity which also

gives the direction of the energy flow. However, the fluctuations of the

intensity, the pressure, and the power are of order of magnitudes and this

presents problems when plotting them. Therefore, in acoustics, the intensity

is converted into decibels in order to reduce the high fluctuations. The power

of backgroupd noise is about 30pWatts with a maximum sound pressure of

3000MPascals which converted into decibel units gives a sound pressure level

of about 40dB. However, the power of very loud music may be 30 Watts with a

sound pressure of 3 Pascals which corresponds to a sound pressure level near

100dB.

The transmission loss is defined as

TL =- 10 log( I(r,z)J (170)

where, in the water column, I(r,z) is the magnitude of the acoustic intensity

in Equation (33) and I is the reference intensity at one meter from the0

source in the water column. Since spherical spreading of the waves occurs at

one meter from the source, the reference intensity is equal to the square of

the time-averaged rms pressure at one meter from the source divided by the

acoustic impedance at this same distance. The reference pressure is given by

Equation (28). Substitution of the scalar potential into Equation (28) gives

N (1)

p(r,z) = L p(z0) p(z) I u (z ) u (z) H 0 (k r) (171)

n=1
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and this expression substituted into the transmission loss expression gives

TL (r,z) = 20 log -ZIp(z) un(z o ) u (z) H(1)(k r) (172)
C n 0 n

n=1

which is called the coherent transmission loss because the phase factor of

each mode has been taken into account in the summation, and the absolute value

is taken after the summation is completed. The layer subscript j has been

erased from the variables to minimize the complexity of the equations. Note

that the transmission loss is also a function of the depth of the source z

and the fact that the acoustic intensity is proportional to the pressure

squared has been used. This coherent transmission loss is highly variable in

space due to phase-dependent interference effects among the eigenfunctions and

a smoother function is more appropriate for sonar predictions.

The detailed interference effects may be 7-,eraged-out to yield smooth

transmission loss curves by summing the individual modal energies. The result

is called the incoherent transmission loss. The resulting incoherent

transmission loss in the water column is

TL (rz) = 10 log (7p (z)Iu n (z) u (z) H(0)(k r)l2 (173)

n=1

where the logarithm is of base 10, the transmission loss is always purely

real, and its dimension is in decibels.

In the elastic layers, the intensity at the point of observation is now

given by the expression

I(r,z) = • ' (174)

where r is the stress matrix in Equation (111) and v is the particle velocity

in Equations (55), (60a), and (60b) where the potentials are given In

Equations (86) and (101). With these equations, the vector intensity is

written as
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v= r + I z (175)
r z

where

(++p ar r + r +z ev z I /
vr A+ ) r az arj5[ v + L8 v +8v W8v

(176a)

and

a v ( V8a 1
( v 8

Iz= v (L+2A) Bz r Br r +z - zr

(176b)

Direct substitution of the scalar potentials in Equations (86) and (101) into

the particle velocity components in Equations (60a) and (60b) gives

N

v (r,z) = E (v) (177)
n=1

th

where the contribution from the n mode is given by

(V() (/4) p(z ) u (z) [u'(z) + k2 v (z)] H 1)(k r) (178)nZno n n o n

and

N

vr(r,z) = (v r) (179)
n=1

where

[;o( ] (1),
(v) : (U/4) p(z ) u (z) [uz) + v (z)] k Ho (knr) (180)

and the prime over the Hankel function stands for the derivative with respect

to the argument.

By the same token, the derivatives of the components of the particle

velocity are given by the summation of the modal contributions given by

58



NSWC TR 89-170

Crv /8r) = (U/4) pCz ) u Cz ) [U'Cz) + k2 v (z)] k H 1 '(k r)
z n 0 n 0 n n n n n

(181a)

(av /ar) = CU/4) pCz ) u (z ) + v'(z) k2 H0)"Ck r)
r n1 0 rn 0 lu z + o

(181b)

Cav /az) = (/4) p(z ) u(z) k[(z) V'(z] - k2(z) u(z) H()(k r)

z 0 n 0 n n n

(181c)

and

Cav/az) =,U/4) PC ) u (z ) [U'CZ) + k V Cz) - K 2 Cz) v z) 1 H ' Ck r)
r nl 0 n' 0 nn n rk rn o n

(181d)

where H (x) 1)Cx) - H Cx) / x. After calculating the particle
0 0 0

velocity and their derivatives, these are substituted in the intensity and

this one in the transmission loss equation

TL (r,z) = 5 log 12 + 12 (182)
C I r Z

to obtain the coherent transmission loss in the elastic bottom layers with

unit reference intensity.

For the incoherent transmission loss in the solid layers, the components

of the intensity are calculated for each mode, i.e.,

(v Cv
r n {,, ., rv) [n r1 + [ +

av av

(183a)

and
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8v 
(v) 

v 1(I z) { n N..[;+p (~- +A )n + r +

(183b)

and they are added using

N
I = ZI) (184a)

n=1

and

N

I E (I) (184b)
n=1

to substitute into Equations (182), where the subscript in the transmission

loss is replaced by the incoherent one.

Use caution when predicting the propagation of sound using any incoherent

transmission loss expression since this is just an approximation to obtain a

smooth curve. The coherent and incoherent transmission loss curve should be

displayed together to be aware of the variability of the result.

As an example, the transmission loss (see Figure 10) is calculated using

the seven eigenvalues in Figure 8. The solid curve represents the coherent

transmission loss and the dash curve is the incoherent calculation. The depth

of the source and the receiver is 112.0 meters. The high oscillations of the

coherent curve is caused by the constructive and destructive interference of

the trapped modes. The radiating modes hardly contribute to the transmission

loss calculations in the water column because of the large imaginary part of

their respective eigenvalues.

As usual, if the acoustic properties used are inaccurate, then the

calculated transmission loss will be erroneous.

Hamilton has been actively involved in the determination of the geo-

acoustic properties of the ocean floor by the use of more easily measurable

quantities. His work on the determination of the compressional sound speed in

the elastic bottom is presented in References 66 and 67 while some results of

the shear wave velocity are given in Reference 68. The shear and compressional
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attenuation coefficients are given in References 69 and 70 and an informative

geo-acoustic compendium is available in Reference 71. Laboratory measurements

of the shear speed7 P and the shear attenuation coefficient7 3 have been made as

functions of depth and frequency, but there are concerns about the

effectiveness of a laboratory to mimic the conditions that the sediment

encounters under the unusual pressure and temperature of an ocean column. An

accurate non-destructive method must be created for the proper evaluation of

these acoustic properties. Even though there are disagreements about most

geo-acoustic properties, a couple of inequalities have been created based on
28

experimental observations. The ratio of shear to compressional attenuation

coefficients should satisfy

b /c f V.75 (185a)

and the ratio of shear to compressional attenuation coefficients should

satisfy

/a 0.75 (c /b 2 (185b)

for each elastic layer from j = J, ..... F-1.
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CHAPTER 9

COMPARISON WITH SIMPLE RANGE-INDEPENDENT MODELS

A few very simple range-independent benchmark ocean models will be

considered to compare our calculations.

1. The first model is a one-layer water wave guide with constant acoustic

properties, a pressure-release surface, and a rigid bottom. This model

resembles the infinite well in quantum mechanics with the exception that the

boundary condition at the bottom is u'(z=D) = 0. The soft surface is described
n

mathematically by u (z=O) = 0 and the eigenfunction that satisfies the wave
n

equation and both boundary conditions is given by

u (z) = a sin(n z), n = 1, 2, 3, ... , N (186)
n n n

where

7n 2-/c- k2 ) /2= (n - 1/2)n/D (187)

which provides the eigenvalues

k2 = W2 /c2 - (n - 1/2) 272/D2  (188)
n

without the necessity of a characteristic equation to search for the zeros.

Note that the fundamental mode is given by n=1 and as n increases, the

eigenvalue decreases towards zero until a limit is reached when k converts
n

from purely real (propagating mode) to purely imaginary. The maximum number of

modes N is obtained by setting k N=O giving
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N = w + 1. (189)
nc 2

The normalization equation provides the amplitude of the eigenfunctions. The

resulting amplitude is

2
a = 2/(pD) (190)

n

where p is the density of the water and the subscript n is not necessary

because the normalization coefficient is constant for all the modes. Finally,

substitution of the normalized eigenfunctions in the equation for the coherent

transmission loss gives

TL(rz) = 20 log 21rZ/D sin[(n - i/2)irz0/D] sin[(n - 1/2)Tz/D] H(1)Cknr)
Zr0 n=on

n= 1

(191)

where the density of the water has been canceled out from the transmission

loss calculation providing no contribution. The same result would be obtained

if the orthonormalization condition has no weighting function. The density

would contribute only if a finite impedance mismatch exists in the wave guide.

Note also that this model allows the introduction of the attenuation

coefficient as the imaginary part of the sound speed. This provides complex

eigenvalues but the eigenfunctions are still purely real.

If the liquid layer is 200.0 meters deep and has a sound speed of 1500.0

m/s then the 25.0 hz source mentioned in the previous sections would excite

seven modes with the eigenvalues given in the second column of Table 2.

2. The second model is similar to the first one, but the bottom boundary is

a pressure-release Interface. In this case, the eigenfunction is still given

by Equation (186), but with

2
= (n n) / D , n = 1, 2, 3, ., N (192)

n

where
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N = (w D) / (n c) (193)

and the maximum amplitude of the eigenfunction is still given by Equation

(190). The eigenvalues are now given by

k2 = 12/c - n2i2/D 2  (194)

and the final transmission loss equation is

N

TL(r,z) = 20 log -2T/D [ sin[(nnzo)/D] sin[(nrz)/D] H (1) (k r) (195)
I- 00 n

n= 1

The six resulting eigenvalues for the case of a 200.0 meters deep water column

with a sound speed of 1500.0 m/s, a soft bottom, and a 25.0 hertz continuous

wave are given in the third column of Table 2. Note that the soft-bottom

eigenvalues are practically located half-way between the locations of the

rigid-bottom eigenvalues and it is expected that the true eigenvalues for a

wave guide with penetrable bottom be located between these two limiting cases.

3. Another way to compare the calculated eigenvalues is to use the

perturbation method for small attenuation coefficients. If the elastic media

has a negligible shear contribution and the compressional attenuation

coefficient in each layer is very small, then both methods must give nearly

the same answer.

Consider the complex eigenequation,

d2 2 2
d u (z) + [k (z) - k2] u (z) = 0 (196)
dz2 n n ndz2

where we redefine the wave number as k(z) = k(z) + ca(z), c is used here to

keep track of the effects of every term in the resulting approximate complex

eigenequation and it will be set to unity at the end of the calculations, a(z)

is the attenuation coefficient in nepers/meter, and k(z) = w/c(z). The

complex wave number in Equation (196) makes the eigenvalues and eigenfunctions

complex. If a(z) << k(z), then we can use the perturbation method to obtain a
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more accurate transmission loss. In this case we will write

a (z) - (0) + c u (1) + C2u (2 )  (197a)
n n n n

and

2 (0) (1) 2 (2)
&-A + CA + CA (197b)

n n n n

which substituted in the complex eigenequation gives,

d 2 . () (1 (2)U(O)+ (1) () Ou )

+k2(z)+2ak(z)a(z)-c 2 (z)_A A(1)_ 2A 2) U + Cu =
z2n n n nn

(198)

which is an approximation to the complex eigenequation Equation (196) due to

the expansions Equations (197).

Combining the c terms of this equation gives the 0th order solution to

the problem, or

d 2  (0) 2 (0) (0)
- u + [k (z) - A u = 0 (199)dz 2 nn n

which is the unperturbed eigenequation that has been solved for the purely
(0) 2 (0)

real eigenvalues A k and eigenfunctions u u . This unperturbedn n n nl

eigenequation corresponds to Equation (69).
1

Combining the terms with c , which corresponds to the first order

perturbation terms, gives

d U1  + [2Zk(z)a(z) - A () 1 u (0) + [k 2 (z) - A (0)] u (1)= 0 (200)

dz 2 n n n n 11

where the unperturbed eigenfunctions are normalized by

z
b

p(z) u(0 ) (z) u ()(z) dz = 6 (201)
fn M n~m

where z is the depth of the resilient bottom of the basement.
b
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(0)

Multiplying Equation (200) by pu and integrating yields
n

z b  d2u(1) z b  z b

Pu (- dz + [ [2 k(z)c(z)- A)]u°dz + pu [k2(z) ]u 1 )dz=O
0 n d2 Of n n n Of n n no~ dz2  pu o"'

(202)

where using the orthonormality condition of the unperturbed eigenfunctions in

the second term of this equation, integrating by parts twice the first term,

and using the boundary conditions at every interface to cancel out the surface

contributions gives

z 2 ( 0 ) z o

zb (I) n (0) (0) (0) 2 ( ) (1)dz A(1)of 2 dz + 2L Ju z)(z + pu(°[k(z)-X °]u dz=

n n n 0 n n n n

(203)

and with the help of Equation (199) the first and second integrals cancel out

giving us the expression

z b

A 2 f p k(z) a(z) ]u (0) 12d z  (204)
n Of n

which is the first order perturbation term for the eigenvalue and its values

are purely imaginary.

Now we write the perturbed part of the eigenfunction under the basis of

the unperturbed part since this is an orthonormal basis, i.e.,

u = A u(0 ) (205)
n rim m

and substitute in Equation (200) to obtain

d2 u(0)

An M + (k 2(z)( )u() + [2Zk(z)cx(z)-A( 1]u = 0 (206)
.1 d 2  n nn n

(0)

then multiply by pu( and integrate as done before. Integration by parts

twice cancels a few terms, and the orthonormality condition yields
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A  2 i o J p k(z)c(z) u(0) u dz (207)
n1 (0 A (0) f n I d

n I

which is in terms of the unperturbed eigenfunctions and eigenvalues, is

directly proportional to the absorption coefficient, and is a purely imaginary

term.

In the cases of trapped modes, where the imaginary part of the

eigenvalues is extremely small, we can rely on the rapid convergence of the

perturbation method and forget about a second order perturbation term. When

radiating modes are taken into account, we must consider calculating the

second order perturbation term.

The c2 terms of Equation (200) into a second order equation gives

d 2  (2) 2 (0) (2) (0) (1) 2 (2) (0)
- u + [k (z)-A ]u + [2Zk(z)a(z)-X n°]u = [a (z)+n )udz2 nn nn nn n

(208)
(0)

which multiplied by pu and integrated as done with the first order
n

eigenvalue leads us to the equation

z z z

A(2)= 2 Z pk(z)(z u () - u - pl O (Z )U (W °2dz
n 0- n n n0 n 0-f n

(209)

where substituting Equation (205) and the orthonormality condition of the

unperturbed eigenfunctions gives

z z 

A(2)= 2 Z A. k(z)x(z)u()u ()dz - a2 (z) u 012dz (210)
m 0 0f

or with Equation (207) we get the simpler form

z

A(2)= Z A2 (A(0) A(0) _ 2 (z)(U (0)12dz (211)

m 0f

2
which Is purely real and a much smaller tera since it is proportional to a
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If we write

u = (212)
n runM

m

then Equation (208) becomes

B d (0) E B k2 (0) (0). () (o) C2_ (2)U (0)XB Lu(+L Bk -A ]u L A [2tkz-A ]

m dz m m

(213)
(0)

which multiplied by pu( and integrated using integration by parts and the

orthonormality condition reduces the equation to

(A )A (0) ) B = A A A , n (214)
1 n n n n1 lm m

2which makes B purely real and directly proportional to ocni
We have already assumed layers of constant density in order to simplify

the elastic wave equation. Therefore, we may define an element of a G-matrix

as

J+1 z

G a 2Z p k (z) a (z) u l0(z) ulO)(z) dz = G (215a)
ru kiz j nj Mj mn

J=1 J

and that of an H-vector as

z
J+1 j+1

H P f a (z) (0) 12 dz . (215b)

= j

Note that all elements of the G-matrix are purely imaginary and symmetric,

while those of the H-vector are -.rely real. These Integrals must be

evaluated in order to calculate the perturbed parts of the eigenvalues and

eigenfunctions.

Now the first order perturbation term of the eigenvalue, Equation (204),

becomes

A(M = G (216)
n nn
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which tells us that the diagonal components of the G-matrix are the

first-order perturbation term of the eigenvalues. The second order term,

Equation (209), simplifies to

G2

A( 2 ) 1( l(0 - H (217)

I*n n I

which substituted into

2 (0) + (1)+ (2) (218)

n n n n

gives the perturbed eigenvalues of the problem. Since A is the only
n

contributor to the imaginary part of the eigenvalue, we may define

2 = ;()+ (2) (219)

n n n

as the real part of the eigenvalue. Then to obtain k from Equation (218) we
n

expand its square root as follows:

A(1) (1)

+ 2 1 + 2 + 2 (220)

n n

where we have assumed that 9n >> A(n Now the imaginary part of the
n n

eigenvalue will be defined as

A (1)
n _ (221)

n 2R
n

which is the same expression in Equation (474) of Reference 53 where only

first order perturbation has been used. By the same token, the real part is

given from Equation (219)
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(2)A

9z . -(0) + n (222)
n n 2r/ (0)

n

where it is assumed that A (2) < A (0) and the same power expansion has been
n n

used. Equation (221) is a crude approximation made by many underwater

acousticians and it can be avoided by taking the complex square root of

Equation (218).

As the first order correction of the eigenfunction, Equation (207) simply

becomes

G
A ( () n*l (223)

n I

and for the second order correction, Equation (214), we get

-G G G G
nI (0)_A (0) )2 A/1 (0) ) ( (224)(A - - (A(°  A ° )( (° _- ( )

n 1 mtn n m n 1

which substituted into the equation

a (z) = u (0)+ [A + B] (0) (225)n n / nl n I ul

1:9n

gives a better estimate of the eigenfunction.

It is left to properly evaluate the G-matrix and the H-vector in

Equations (215). They can be obtained by numerical integration or by the

approximate method deveioped in Reference 53. Since we are interested here in

the simple case of a semi-infinite fluid-type bottom Equations (215) become

trivial integrations of exponential functions. The resulting trapped

elgenvalues are given In the fourth column of Table 2. Note that the second

order perturbation term was not enough to make the real part of the elgenvalue

closer to the exact one. Therefore, the attenuation coefficient chosen by

Miller 4 2'4 3 is too high for the perturbation method to produce accurate

results for the trapped eigenvalues, and it is presumably worst for the
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radiating ones.

4. The next model is a layer of water over a semi-infinite elastic layer

which was used by Ellis 11 to model the propagation of underwater explosives

over an ocean floor made of chalk. Both layers have constant acoustic

properties. Since the surface of the water is pressure-release, the

eigenfunction is given by

u n(z) = aI sin(nI z) (226)

where n12 = k 2 - k and where z = 0 5 z < z2 . The compressional and shear

eigenfunctions in the semi-infinite layer radiated without reflecting back,

therefore the compressional mode is given by

u n2(z) = a2 exp(iTn2z) (227)

2 2 2
where n2 = k2 - k and the shear mode iswhr W 2  2 n

v (z) = b exp(/ z) (228)
n n

2 2 2
where ' K - k. The three unknown constants, a , a2 , and b, are determinedn n 1

by the three liquid-solid boundary conditions in Equations (113), (115), and

(116). Direct substitution of the given eigenfunctions in the three boundary

conditions provides two equations with the three unknowns, i.e.,

2a 7 cos( 7?z ) = ai exp("77 ) + k b exp(i- z) (229a)
1 n12 2 n2 n2 2 n n2

and

p K a sin(niz2) = p (K - 2k )a exp(iun z 2p k2 b .exp(- z
1 1 n12 2 n 2 n22 2 n n2 n2Z2

(229b)

and a third equation with two of the unknowns, i.e.,

2 a i D exp(471 z ) + (2k2 - K ) b exp(i n2 z ) 0. (229c)
2 n2 n22 n n2 2
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If this third equation is solved for one of the unknowns to be substituted

into the other two equations, we obtain two equations with two unknowns. The

two equations are divided tn eliminate the remaining unknownz, and to form the

characteristic equation

W(k ) K tan(Nz ) + Z p2/p, [ (2k2 - K2)2 + 4 k ] = 0
n 2n1 2 2 L n2n

(230)

which is a complex equation even if the attenuation coefficients are not

included in the model. The transmission loss is calculated using the same

equations derived in the previous section.

Substitution of the parameters in the "Fluid bottom" case, shown in Table

1, into this simple model gives the three eigenvalues displayed in the last

column of Table 2. These eigenvalues agree with double precision accuracy with

the ones obtained using our multilayered model, hence the figures in the last

column of Table 2 represent the solutions from both methods. Double precision

accuracy was also found between the resulting eigenvalues from this simple

model and our multilayer model when the bottom is a semi-infinite layer of

Clay-silt, Sand, Basalt, or Chalk (see Table 1).

Note that these eigenvalues are located between the rigid-bottom and

soft-bottom eigenvalues. Hence, these two simple cases may be used to

establish limits to the eigenvalues searched.

With the use of these simple models, the range-independent multilayer

model has been compared in the limit when the number of layers is a minimum

(with or without shear waves). Therefore, some transmission loss results will

be made for the various bottom types given In Table 1.

The first case to consider is a water column 200.0 meters deep over the

semi-infinite sand ocean floor with the acoustic properties in Table 1. A

total of seven eigenvalues were found (see Figure 11) for a 25.0 Hz source.

The real part of the normalized fundamental mode is shown in Figure 12 where

the solid curve represents the compressional eigenfunction and the dotted

curve is the shear contribution. The imaginary part of this fundamental mode

is displayed In Figure 13 where the discontinuity at the liquid-solid

interface is caused by the impedance mismatch and the presence of the shear

contribution. The first three eigenfunctions are T-R modes because the

compressional sound speed in the basement layer is greater than the sound
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speed in the water column (1500.0 m/s) and the shear sound speed is smaller

than the water sound speed. The fourth and higher depth functions are R-R

modes. The real part of the fourth mode is given in Figure 14 where the

compressional eigenfunction starts to oscillate into the bottom. The imaginary

part of this mode is plotted in Figure 15. Note that the first and fourth mode

are damped out when they reach the depth of 600.0 meters. At this depth the

higher order radiating modes take over in the transmission loss calculation.

For best visualization of the propagation of sound in range and depth, the

three-dimensional plots and the contour plots have been proven to be useful

tools. The advantage of the three dimensional plots is that every calculated

point is plotted. However, the disadvantage is that it is more difficult to

visually extrapolate the numerical values of any point. The advantage of the

contour plot is that it is a two-dimensional plot and numerical values can be

roughly extrapolated visually, but not all the calculated values are used to

obtain the contours and there is less information in this type of graphical

display. For the various tastes of the readers, both plots will be displayed.

The three-dimensional transmission loss plot versus range (in kilometers)

and depth (in meters) is given in Figure 16 for the same case of the

semi-infinite sand basement and a 25.0 hertz source located 100.0 meters deep.

The transmission loss at the liquid-solid interface has been intentionally

omitted from the plot to mark the location of the water depth. Note the

oscillatory behavior of the transmission loss surface at short ranges which is

caused by the interference of the seven normal modes of this wave guide.

However, the high imaginary component of the excited eigenvalues (see Figure

11) causes all the modes, except the fundamental mode, to completely damp out

at ranges beyond 10.0 kilometers. The contour plot for the results in Figure

16 is displayed in Figure 17. The legend at the bottom of the contour plot

relates the curve type to the contour transmission loss value in decibels.

The next case to consider is the 200.0 meters deep water column over a

semi-infinite clay-silt ocean floor with the acoustic properties in Table 1. A

total of seven eigenvalues were found (see Figure 18) for the 25.0 Hz source.

The real (imaginary) part of the calculated fundamental mode is plotted in

Figure 19 (see Figure 20 also). A very interesting observation made is that

all the modes are R-R modes which radiate into the bottom. This is because the

compressional speed In the solid basement is almost equal to the water sound
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speed. Also, there is hardly any contribution from the shear waves because of

the relatively low shear speed of the clay-silt ocean floor. Since the excited

modes display the same oscillatory behavior, they are not illustrated. The

three-dimensional transmission loss plot in Figure 21 exhibit a faster decay

of the contribution from the excited modes, compared to the sand bottom case

in Figure 16, despite the lower attenuation coefficients. At ranges greater

than 5.0 kilometers the fundamental mode becomes the only contributor to the

transmission loss. This rapid decay of the higher modes is caused by the very

low compressional sound speed of the clay-silt basement. Only R-R modes are

excited by the source and these radiating modes are strongly affected by the

acoustic absorption of the bottom. The trapped modes in the sand bottom case

are evanescent in the bottom and are much less affected by the high

attenuation of sand. Comparison of the contour plot for clay-silt bottom (see

Figure 22) with the one for sand bottom (see Figure 17) shows that the

fundamental mode propagates further in the water column if the bottom is made

of sand. The same conclusion can be obtained by comparison of Figures 16 and

21, but it is easier to visualize with the contour plot.

It is almost impossible to find a water column directly over basalt.

However, the case will be considered only for its interesting acoustic

features. Note, from Table 1, that basalt has lower attenuation coefficients

relative to those of sand or clay-silt and that both sound speeds are much

higher than the water sound speed. The eight complex eigenvalues found are

plotted in Figure 23. The first five modes are T-T modes because of the high

sound speeds of basalt. Figure 24 displays the real part of the normalized

fundamental depth function and Figure 25 is the fifth normal mode* As the mode

number increases, the effects of bottom absorption increases and the imaginary

part of the eigenvalue in Figure 23 increases. The sixth mode (see Figure 26)

is the first R-T mode and absorptive effect to the oscillatory compressional

mode is different from the effect to the exponential one, hence the irregular

pattern displayed in Figure 23. The seventh eigenvalue corresponds to the

second R-T mode (see Figure 27), and the last eigenvalue represents the only

*To minimize the number of figures displayed for this case, the imaginary part

of the eigenfunctions are omitted.
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R-R mode (see Figure 28) of the set.

The three-dimensional plot of the coherent transmission loss for this

case is given in Figure 29. All the modes contribute to the transmission loss

for ranges smaller than 5.0 kilometers. In the case of larger ranges, only the

first four normal modes are needed. The second, third, and fourth modes are

not damped out at 10.0 kilometers because they are T-T modes that propagate

mostly in the water column and experience a negligible effect from the

absorption of the bottom. The fifth mode is also a T-T mode, but the imaginary

component of its eigenvalue (see Figure 23) is much higher, causing the mode

to dampen out rapidly.

The contour plot for this same data Is provided in Figure 30 where the

discontinuity in the transmission loss at the liquid-solid interface is a

result of the impedance mismatch of the boundary. The highly oscillatory

behavior of the transmission loss makes the contour plot somewhat complicated

to interpret. In this case, the three-dimensional plot may be more useful.

However, the contour plot does show the bundle of acoustic energy that

scatters the bottom several times at the critical angle of incidence. There

are 17 surface and bottom bounces for ranges between 3.83 kilometers and 14.85

kilometers. This corresponds to a critical angle of incidence of about 72.8

degrees relative to the vertical axis. This plot provides a relationship

between the normal mode theory and the ray theory.
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CHAPTER 10

ADIABATIC NORMAL-MODE THEORY WITH SHEAR WAVES

After verifying that the range-independent normal mode calculations agree

with the calculation obtained with simple benchmark models, the next step is

to include range dependence with the shear effects of the elastic bottom

sediments.

The range-dependent Helmholtz equation in the water layers of the ocean

wave guide is given as,

V2 (r,z) + k 2(r,z) q(r,z) 6 - (r) 6(z-z) (231)2nr 0

where now k2 displays the range-dependence of the acoustic properties of the

ocean. The range-dependence of the boundaries are displayed in the boundary

conditions themselves.

The range-independent solution was found to be given by,

N
p(r,z) = p p(z) un(z) U (z) H( (k r). (232)

40 n
n=1

However, in the range-dependent case, the eigenfunctions and eigenvalues vary

with range, therefore the solution may be written using the quasi- separation

of variables as,

N

O(r,z) aE f (r) u (r,z) (233)
n=1

where u (r,z) are taken as the basis depth functions that satisfy the equation
n
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u (rz) + [k2(rz) - k2 (r)] u (r,z) =0 (234)
2 n n

and the orthonormality condition

u p(z) u (r,z) u (r,z) dz = 6 (235)

Direct substitution of Equation (232) into Equation (231) gives,

{V2 [fCr) u(rz)] + f cr) [a2 /8z 2 + k2(r'z)]u (rz} - 6(r) S(z-z
n=1

(236)

where

2 1 a- (237)

and we may substitute

V' [f (r) u (r, z)] = u V'f + 2 f* u + f V2 U (238)

to obtain

(V + k )f + 2 e f U + f V2u 6(r) 6(z-z)
n1 r nJn r n r n n r j 2nro

(239)

which multiplied both sides by p(z) u (O,z) and integrated throughout depth
m

gives the inhomogeneous range equation

[ ---- r n--- n 2(r) f (r) = 6(r) p(z ) u (O,z) - (240)IF n- 2( To I

N N

2 1 f'Cr)J (r) - Z f (r)W (r)
m=1 m=1

where
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Cr) rFP(Z) u (r,z) zU om(r (rz u Un(r,z) dz (241a)

and

W (r) E p(z) u (r,z) 1 u (Crz) dz (241b)om 0 f M - r r T- nrF)d)(4b

are the elements of the coupling matrices that will take care of the exchange

of energy of the normal modes in the range-dependent environment. The prime

stands for the derivative with respect to the argument.

In the case where the acoustic properties and the boundaries of the ocean

wave guide slowly vary with range, the coupling integrals are negligible and

the adiabatic approximation is feasible. The adiabatic range equation is

[ r _r n k (r) f (r) =21 6Cr) poz ) u COz) (242)

where the range-dependent waveguide will be divided into M number of range-

independent segments. The procedure is to calculate a fixed number of trapped

and radiating modes for each range-independent segment. The resulting set of

eigenfunctions provides the function u (r,z). The unknown function, f (r), Is
n n

obtained from the range equation and the range boundary conditions.

Range segment #1 is defined as the one where the source is located. The

homogeneous solution for the first range segment is

if ( ) 1 (e1) 11 H(2) 1k

(f r) E H Ik r) + ( k r) (243)
n n 0 n n 0 n

where the left-side superscripts is the range segment number, and the unknown

constants are to be determined with the range boundary conditions.

In the limit as Ik r --> 0 the asymptotic forms of the Hankel functions
n

H C) (Ik r) - H C2) k r) -- 2i/n log C k r) (244)
0 n 0 n e n

gives

f (r) -- 20n C _ - ) log k r). (245)
n n e n

The particular solution Is obtained by Integrating the inhomogeneous range
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equation over a small cylinder of radius a containing the source, i.e.,

a d ra 1
-
f  aI2 *

I f"(r) dr + - 1f'(r) dr + J k2 (r) f Cr) dr = (246)
0 n Ofr n Of n n

0 0' 0 ;
3 r  

r

-p(z 0 ) u COz )/(2n) f a r dr.
n '0 0

Integrating by parts gives,

af(r)j + f (r)/ra + r- 2 + r) f (r) dr = (247)
0 n 0 Of n

-p(z ) u (0,z )/(2n) ) 6(r) dr0 n 0o 0oJ  r

which in the limit as a --* 0, only the slope at r = 0 and the integral over

the delta function remains, i.e.,

d f (r)/dr -~-p(z 0) u (0,z 0 (2Tir) (248)
n 0 n 0

which yields

1fn(r) -- _ p(z 0 ) Un(O,Zo) loge(1 k r )  (249)

Equating the two solutions provides the relationship

n n 4 P(z) (O,z0 ) (250)

where the right-hand-side term is the constant in the range-independent

solution and this equation will be used as the relationship between both

unknowns in the first range segment.

The range segments labeled 2 to M-1 are characterized by the homogeneous

range equation, therefore the solutions are,

mf (r) a H(1(mk r) + M H (2)Ck r) (251)
n n0 n n 0 n
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where 2 s m < M.

The last range segment is assumed semi-infinite and with no source

present, therefore only the divergent solution of the homogeneous range

equation satisfies causality. The solution for the Mth range-independent

segment is

Mf (r) = H (1)( Mk r). (252)
n n 0 n

The unknowns are determined by the radial boundary conditions. These are:

1. Continuity of the normal particle velocity

a mf (r) u (r,z)l _9 NM+If (r) u (rz)I (253a)
'5-r n n 'r=r r E n n r=r

n=1 m n=1 m

2. Continuity of the pressure

N N

pE mf (r) u (r,z) = p E '1f n(r) u (r,z) (253b)Pnn n rfr n r~r
n= m n=1 m

Since the elgenfunctions already satisfy the boundary conditions at every

range and depth, in a slowly varying range-dependent environment, the

conditions to satisfy for each mode are

mf (r) = continuous (254a)
n

and

mf'(r) = continuous (254b)
n

for 1 S m < M.

Application of these radial boundary conditions to the M-1 interface

gives

H- 1 HiHi (2) (M-ik  = H (1)H

H (1) M-1k r )+ H ) Ckr )=aH r
n 0 n M-i n 0 nH-1 n 0 n M-1

(255a)

and
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1 -1 H()(M-lk M-i H(2)( - k  r ' 1k HH H
-Ikn [an 1 nn- nn 1 nH-I nn 1 n M-1

(255b)

which is rewritten in matrix form as

M-Hn M-A = MHn MA (256)n,H-i n n,H-I n
where

H( ' (2)1
JH ( r n i 0 n i (257)

n,i ik H(1)(ik r ) ik H(2)(jk r )
n 1 nI n I ni

and

JA n (258)

for i, j = 2, 3, 4, .... M and where Mj = 0. To obtain M-1A in terms of
n n

HA , we write
n

M-1A = (m-lH FI H MA . (259)n nM-i n,H-1 n

The M-2 boundary has the relationship

M-2 H M-2MA = M-Hn  M-A (260)n,H-2 n n,M-2 n

and substituting the previous relationship for M-A1 gives
n

A-%= (-2 H I M-H ( -IN  )I HN  M. (261)n n,M-2 n,M-2 n,M-1I n,M-I n

By the same token, we can propagate the solution to the first segment with

H I = 2H1 2A (262)r,I n rn,i n

which gives
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n TiT = nUi 1 M+1 [H m+ 1 I M} A (263)

where the term in the parenthesis is now defined as the 2x2 matrix X and the

coefficients in the first range segment are given by

1 = X M (264)
n 11 n

and

= Xa (265)
n 21 n

Substitution of these relationships into Equation (250) gives

z M
( p~z) u (O,z) = (9 - ) (266)

0(no011 21 n

which is solved for the unknown at the semi-infinite range segment and this

solution can be propagated to obtain the other unknowns.

The potentials for the range-independent solid layers are given by,

9(r,z) 1 [ - P(zo) u (z0) H.1 (kn r)] u (z) (267a)
n=1

and

ip(rz) p(z ) u (z ) Li) (k r)] v (z) (267b)
0 no 0 n n

n=1

where the term in the brackets is common to both solutions. With this

observation In mind, the range-dependent solutions in the solid layers will be

written as

N

((r,z) = E f (r) u (r,z) (268a)
n=1

and

N
O(r,z) = E f (r) v (r,z) (268b)

n=1

82



NSWC TR 89-170

which must satisfy the four boundary conditions throughout range and depth.

The range function for these potentials is the same as the one given for

each range segment in the liquid layers. The unknown constants are evaluated

by the four radial boundary conditions. One of them is that the tangential

component of the particle velocity must be continuous, i.e.,

v (r ,z)= (@.--+k2@) =continuous (269)z m 0 n r

where substitution of p and i gives

fnim) [u'(r ,z) + k2 v(r ,z)] = continuous. (270)

However, since the eigenfunctions already satisfy the boundary conditions in

Equation (119), then all we have left to satisfy is the continuity of f (r ).n m

The normal component of the particle velocity is another boundary

condition to be satisfied. This is given by

av[()z) 0'[rz)]
Cr Z) = - (r z) + Orz)= continuous (271)

and substitution of ( and 0 gives

f'(r ) [u + Vl f (r ) av' = continuous (272)
n m n nr n m r lu +- r

m m

where, in a slowly varying environment, the change in (u +v') with respect to
n n

range is much smaller than the change of the Hankel functions in f (r) with

range. Therefore, the only functions to make continuous are f (r) and f'(r).
n n

The same conditions are found from the continuity of P and P . With this
rz zz

adiabatic approximation, the need to match four boundary conditions explicitly

has been avoided and only two equations must be satisfied. The equations to

match turn out to be the same as the ones in the liquid layers, therefore the

same function f (r) can be used for both states of the matter. This property
n

may decrease the computation time by orders of magnitude.

After all the coefficients of the range-dependent waveguide are

83



NSWC TR 89-170

determined, the coherent and incoherent transmission loss in the solid layers

are obtained by Equations (176) through (184) where the components of the

particle velocity are

N

=. f n(r) [u'(r,z) + k 2 v (r,z)] (273a)
n=1

and

N

V E f' (r) [u(r,z) + v' (r,z) (273b)
n=1

where It has been assumed that the change of the eigenfunctions with range is

negligible compared to the change in the Hankel functions. The derivatives

with respect to range are given by

a f'(r) [u(r2z) + n V(r,z) (274a)
n=1

and
N

a " (r) [un(r,z) + v'(r,z)] (274b)
n=1

where the homogeneous range equation gives

f"(r) = - f'(r)/r - k 2(r) f (r). (275)
n n n n

The derivatives with respect to depth are given by

aN 2k
2  ]C 7 a

T = f (r) [k (u+v') - u (276a)
n=I

and

a f'(r) [u + (k2-K 2 ) V]. (276b)
T r n n n

n= I

The coherent transmission loss in the range-dependent water column is
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TL (r,z) = -20 log[ 4n P( f n(Un(r , ~ 27
0(OI n=1

and the incoherent transmission loss is

TL rz) =-1 lo 41 _ 1'Z I12()u rz (278)
- 0[ p(Z) 0 1 n n~

where the range function f nCr) and the eigenfunctions are complex and the

transmission loss is real.
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CHAPTER 11

COMPARISON WITH EXPERIMENTAL MEASUREMENTS

The solutions from this range-dependent model can be compared with other

range-dependent models with the purpose of validating its results. However,

there is no other range-dependent model that can include the effects of shear

waves from the ocean bottom. Anyway, if there were an opportunity for the

inter-model comparison, their agreement coes noL rule out the possibility tnat

both models are incorrect. A better way of validating this range-dependent

model is to compare its solutions to experimental measurements.

Ellis and Chapman" , 1 2 from the Defense Research Establishment Atlantic

(DREA), Dartmouth, Canada, have participated in a sea-test at a United Kingdom

continental shelf. One of the test areas has a slight range dependence of the

ocean floor. The approximate depth of the bottom is 100.0 meters and the

composition of the bottom is mostly chalk* (see Table 1) wit, a few meters of

sand at the top. They modeled this ocean environment as a range-independent

water layer over a semi-infinite chalk basement. Tnerefore, they neglected the

sand sediment and the ubiquitous basalt basement that should be located

somewhere under the chalk sediment. This approximation is not valid at

frequencies much lower than the optimum frequency of sound propagation,

because the penetration capability of its normal modes becomes higher and they

may reach the depth of the basalt basement. This simple two-layer model is

also not valid at frequencies higher than the optimum frequency because the

effects of the depth dependent water column becomes of paramount importance to

* Note that chalk does not satisfy the second inequality of Equations (185),

but it is not unusual for measured attenuation coefficients to be highly
erroneous since they are the most difficult ones to obtain. Even though these
properties of chalk may by questioned, they will be used for calculating the
transmission loss in the range-dependent environment described in References
10 and 11.
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the transmission loss calculation. They found the optimum frequency for the

environment to be in the vicinity of 300.0 Hz. At much higher frequencies,

the effects of the shear waves from the elastic bottom becomes negligible

compared to the effects of the depth-dependent water column. Therefore, we

will concentrate on the frequencies near and below the optimum frequency.

The source used were explosives that were preset to detonate at a depth

of 37.5 ± 1 meters and a hydrophone was located at 71 meters deep. The water

depth is about 105 meters at the location of the hydrophone and it has a

constant slope with a water depth of 95 meters at a range of 55 kilometers

from the hydrophone. This corresponds to a bottom slope of 0.01 degree and it

can be considered a range-independent wave guide. A considerable amount of

transmission loss measurements have been provided by Chapman for the 1/3

octave band center frequencies of 64, 128, 256, 512, and 1024 Hz as a function

of range from 10 to 90 kilometers. It has been found that models with or

without shear contribution provide nearly the same transmission loss for

frequencies higher than 256 Hz, hence the lower frequencies will be considered

here.

Figure 31 is the three-dimensional plot of the range-dependent coherent

transmission loss for a frequency of 128 Hz and a source depth of 38 meters.

The bottom is a semi-infinite basement of chalk with the properties in Table

1. The water column has a sound speed of 1508 m/s from the surface to a depth

of 28 meters, and a constant sound speed of 1494 m/s from a depth of 45 meters

to the bottom. The density is a constant I gm/cc from the surface to the

bottom. The range-dependent wave guide has been divided into 22 range-

independent range segments. The first few depth functions are T-R modes

similar to the ones for a sandy bottom (see Figures 12 and 13) and all but the

fundamental mode have negligible contribution at ranges greater than about 20

kilometers. The contour plot of this down-slope wave guide is shown in Figure

32 where the slight discontinuities in the derivative of the contours are

caused by the range segments.

Comparison of the measured and computed transmission loss, for the

hydrophone depth of 71 meters, is displayed in Figure 33. The frequency is

128 Hz and the range Is extended to 100 kilometers to accommodate the provided

measurements. This transmission loss calculation agrees with the one made by

Ellis and Chapman with the simple two-layer model.' 12 However, their model is
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overestimating the loss at frequencies below 100 Hz.

Figure 34 presents the calculated and measured transmission loss for the

frequency of 64 Hz. Note that the excited normal modes are rapidly damped at

this lower frequency. If the shear speed of chalk is changed to the fluid-

like value in Table 1, the calculated coherent and incoherent transmission

loss becomes the one in Figure 35. Now all the normal modes are propagating

with much less attenuation, but this fluid-like model is underestimating the

loss. Note from these plots the tremendous importance of the shear waves in

the transmission loss calculation.

However, there must be a reason for the disagreement between the

theoretical and experimental values. Ellis and Chapman speculated that a deep

reflector is causing some of the acoustic energy to return to the water

column, but their simple model is incapable of including more layers.

Under the assumption that their suggested deep reflector may be the

omnipresent basalt basement, a semi-infinite layer has been included in our

model with the properties of basalt given in Table 1. The depth of the chalk-

basalt interface was taken as a variable in order to fit the calculated

transmission loss with the experimental data. This inverse scattering

technique provided the best fit for a chalk-basalt interface depth of about

240 meters and the resulting transmission loss is displayed in Figure 36. The

disagreement at ranges greater than 60 kilometers may be due to the extremely

high transmission loss that makes the signal fall below the noise level of the

measured data.

Since the exact location of the sea-test is confidentially kept by the

Canadians, there is no way we can verify the true depth of the basalt.

However, it has been noticed that this estimated depth is typical for similar

ocean environments. Also it has been verified that the semi-infinite layer of

basalt hardly changes the transmission loss calculations at 128 Hz (see Figure

33) because the fundamental depth function becomes negligible at 240 meters.

It is true that the wave guide just considered may be taken as range-

independent. Therefore, an up-slope range-dependent wave guide will be used to

test our model for a steeper bottom slope. A 25.0 Hz source is located at a

depth of 112.0 meters in a 200.0 meters deep water column of constant sound

speed (1500.0 m/s) over a fluid-like bottom with the properties In Table 1.

Three trapped and four radiating modes are detected in this range-independent
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wave guide. The source has been placed at a node of the second normal mode to

avoid its excitation. The contour plot of the coherent transmission loss is

provided in Figure 37 and its three-dimensional display is in Figure 38 where

all seven modes have been included in their calculation. Since the Hankel

function computation has been performed using the asymptotic approximation,

the near field (r < A = c/f a 60 meters) transmission loss is not correct and

is not displayed in the given plots.

To convert this wave guide into a range-dependent one, we will create an

up-slope that starts at five kilometers and ends at ten kilometers from the

source with a final bottom depth of 150.0 meters deep. Beyond ten kilometers

the wave guide remains range independent. The slope has been divided into 50

segments and the third trapped mode becomes a radiating mode in the shallow

portion of the wave guide. This slope has an angle of 0.57 degree and only the

first three normal modes have been used for this computation because the

higher order modes are of no effect to the transmission loss at the region of

interest. The results in this range-dependent wave guide are given in Figures

39 and 40. Note that some of the acoustic energy is propagating into the

bottom as a consequence of the slope which Is converting the third trapped

mode into a radiating mode with a higher imaginary component of the

eigenvalue. Also note, by comparison of the range-dependent case (see Figure

39) with the range-independent case (see Figure 37), that the transmission

loss near the source is almost identical to the one for the range-independent

case. Hence, assuring the proper range-dependent transmission loss

computations. A similar propagation behavior was detected by Jensen 17 and
53

Miller.

The variation of the real part of the three eigenvalues with range

segment number is plotted in Figure 41 where the bottom curve with the highest

variation is the third trapped eigenvalue as it becomes a radiating one. The

imaginary component of the eigenvalue is displayed in Figure 42 where the

imaginary part of the third mode has become so high that its contribution to

the transmission loss can be neglected. The real part of the third normal mode

at the first range segment with the water depth of 170 meters is given in

Figure 43. As the water depth becomes shallower the third normal mode becomes

Lle radiating modp In Figuie 44 fuo the water deptn of 'C ;.zntcrs. At 150

meters water depth the mode develops more oscillations into the bottom (see
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Figure 45) and its amplitude becomes order of magnitude smaller displaying its

negligible contribution. Hence, the precipitated propagation of the

interference pattern in Figure 39.

So far, we have performed transmission loss computations for range-

dependent wave guides with negligible shear contribution and the water column

has been a single layer of constant sound speed and density. An actual sound

speed from the Arctic Ocean is provided in Figure 2 with its salinity and

temperature profiles. The very low temperature of the environment causes the

propagated sound to be much slower than 1500 m/s and the high fluctuations

with depth are caused mainly by internal currents typical of the shallow

region of this ocean. This microstructure of the sound speed profile is highly

important to the propagation of high-frequency sound. For a 25 Hz source, a

valid approximation is to consider the 200 meters water column a single layer

with surface sound speed of 1435 m/s and a bottom sound speed of 1460 m/s. The
-1

sound speed gradient is 0.125 s and the bottom is a semi-infinite layer of

sand. To consider the case of downslope propagation, the bottom depth

increases from 200 meters at five kilometers from the source to 400 meters at

10 km range. The resulting transmission loss in this range-dependent

environment, with the bottom slope of -2.29, is provided in Figures 46 and 47.

Note, by comparison with Figures 16 and 17, that the gradient causes the sound

to interact less with the bottom, therefore causing it to propagate with less

loss. Also, as the bottom depth becomes larger, the sound gets trapped in the

surface channel caused by the positive gradient. This channeling behavior is

also modeled by ray bundles that bend upward and bounce back from the

pressure-release surface forming caustics at the regions where they

contructively interfere. Finally, note the destructive interference that

occurs in the bottom at about seven kilometers. As the sound bounces from the

ocean floor, some of its energy gets refracted into the bottom. However, at

the range-dependent region of the wave guide the angle of reflection is

affected by the slope, causing most of the reflected energy to scatter the

surface at a shallower angle and become trapped in the water column. The

combined effects of sound trapped in the channel and the reflections from the

slope contribute to the easy detection of surface ships and submarines from

open-ocean receivers.

The plots for the range-dependent wave guides do exhibit sound
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penetration into the bottom, but it seems to be more dampen than the one

reported by Jensen1 7 and the one by Miller.3 A probable explanation is that

the mode coupling terms in Equations (240) must be included in the range-

dependent transmission loss calculations since the adiabatic approximation

breaks down for rapidly varying ocean wave guides.

Another important step for a better ocean model is to include the effects

of axial variations. Since the number of radiating modes have been drastically

reduced with the approach given in this investigation, the problem of computer

memory and storage has been decreased and further computations can be pursued.

This work represents a step closer to the final three-dimensional coupled

normal-mode model with shear wave from the ocean floor and the Arctic snow/ice

surface layers.
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CHAPTER 12

CONCLUSIONS AND RECOMMENDATIONS

A new sound propagation model and its computer code has been developed

based on the theory of normal modes. This normal mode model has been expanded

to take into account the effects of the elasticity of the ocean floor and the

depth dependence of the acoustic properties by dividing the wave guide into

horizontal layers with constant density, constant shear speed, and constant

attenuation coefficients. However, the water column has layers of linear wave

number squared to better simulate the sound speed profile. It has been found

that the compressional sound speed in the elastic layers can also have linear

wave number squared and the density in the water layers can be a variable and

still have a solvable set of wave equations. However, the limited knowledge of

the detailed properties of the bottom and the limited applications suggest

that these flexibilities can be excluded from the computer code. Since the

absorptive properties of the bottom is so high and the attenuation of low-

frequency sound in the water is so low, the absorption in the water has been

neglected.

The newly developed normal mode model searches for the eigenvalues in the

complex wave number plane using the Levenberg-Marquardt algorithm that

searches for the minima of the magnitude of the complex determinant. It has

been found that the absorptive properties of the semi-infinite bottom causes

the radiating wave number spectrum to be inherently discrete, hence the false

boundary introduced by Evans has been eliminated and the number of radiating

modes has been drastically reduced. The reduced number of modes for the

transmission loss calculations allows for the feasibility of calculations at

higher frequencies and deeper ocean wave guides.

The transmission loss in the elastic sediments is computed using the

magnitude of the acoustic intensity vector. This complex intensity vector is

the scalar product of the stress tensor and the particle velocity vector. The
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intensity vector can also be used to determine the direction of propagation of

the acoustic energy.

Range dependence of the acoustic properties of the ocean wave guide has

been taken into account by using a modified version of the adiabatic normal

mode theory to include the shear waves. This adiabatic normal mode theory has

been developed with the assumption of a slowly varying environment. However,

the threshold of maximum variation is not known because of the high degree of

complexity of this multilayered model and the large number of acoustic

properties that can be varied in range.

The eigenvalues, eigenfunctions, and range-independent transmission loss

results have been compared to the benchmark two-layer model, with a

semi-infinite elastic bottom, by Ellis and Chapman and the perturbation method

for fluid-like bottom by Miller yielding excellent agreement.

The range-dependent coherent transmission loss calculation has been

compared to transmission loss measurements by the Defence Research

Establishment Atlantic (DREA), Dartmouth, N.S., Canada, at the United Kingdom

continental shelf. Very good agreement was obtained at 128 Hz and above with a

the model containing a semi-infinite chalk bottom. However, this model

overestimates the loss at frequencies below 100 Hz. At these lower frequencies

the shear and compressional depth functions extended deeper into the bottom

where acoustic properties are unknown, hence the ubiquitous basalt basement

has been included at a depth of 240 meters from the ocean surface to provide

the agreement at 64 Hz without changing the results at 128 Hz and above.

Hence, this multilayered model can also be used for inverse scattering

purposes.

The up-slope wedge-like ocean has been modeled for a variable slope to

observe the changes in the transmission properties and to test the validity of

the adiabatic approximation. Perfect agreement has been found between the

range-independent and the range-dependent transmission loss when all the

segments had the same acoustic properties and layer thickness. As the slope

increased a "tongue," similar to the one observed by Jensen and Miller, was

developed. However, increasing inaccuracy of the range-dependent transmission

loss with increasing bottom slope is expected due to the need of the coupling

terms in the inhomogeneous range equation which involve the range derivative

of the eigenfunctions.
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The next step to the ultimate transmission loss model is to include these

coupling contributions. Also, it is possible to include the azimuthal

variations of the ocean using the adiabatic approximation to obtain a three-

dimensional transmission loss model for slowly varying environments. Finally,

the azimuthal and range coupling contributions can be incorporated in the

three-dimensional model to simulate sea-mounts and more complex underwater

structures.

Other steps to improve the present computer code are to:

1. Include the effects of the elastic snow/ice layers at the surface of the

ocean model to simulate the sound propagation in the Arctic environment.

With such a model, it is possible to study the effects of shear waves on

ice-mounted receivers.

2. Include layers with linear variation of the density with depth. The

variation of density with depth in the water column has been measured and

found to be of minimum importance, but its variation in the elastic

sediments is often of considerable importance.

3. Include elastic layers with variable compressional sound speed. It has

been theoretically proven in this work that the elastic wa,e equation

representing a layer with variable compressional sound speed can be

separated into an equation for shear waves and one for the compressional

waves.

4. Include absorption effects from the water column. The absorption in the

water at low frequencies is negligible. However, its contribution at

higher frequencies becomes important and it must be included in the

transmission loss calculation.

5. Include the effects from surface and bottom roughness. Very simple

equations have been derived by Kuperman and Ingenito7 4 with the Kirchhoff

approximat i. The equations ignore the contributions from the

non-specularly reflected acoustic energy and they may be added to the

imaginary part of the complex wave numbers after the eigenfunctions are

computed.

6. Refine the searching algorithm to "guarantee" the uniform convergence to

all the complex eigenvalues. The present searching algorithm may not be

able to find all the complex eigenvalues for a water column with two or

more channels since these create degenerate eigenvalues with irregular
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spacings.

7. Include an option to obtain the transmission loss as a function of

frequency and to account for the frequency spectrum of the signal emitted

by the source (its signature). The current computer code calculates the

transmission loss of continuous wave (CW) acoustic signals and extra

computations are required to obtain the transmission loss of pulses and

other wave forms.
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<- dx

F(x)=Ap(x) - F(x+dx)=Ap(x+dx)

a. A = area

<- dx 4

b. v x) dt v (x+dx) dtb.x A =area

FIGURE 1. MODELS TO DFRIVE THE EULER EQUATION OF MOTION (a) AND THE
CONTINUITY EQUATION (b)
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FIGURE 2. SOUND SPEED, SALINITY, AND TEMPEATURPE PROFILES TAKENI IN THE EAST
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TABLE 1. GEO-ACOUSTIC PROPERTIES OF THE VARIOUS SEDIMENTS

Bottom Density Compressional Compressional Shear Shear
Type speed attenuation speed attenuation

(gm/cc) (m/s) (dB/kHz-m) (m/s) (dB/kHz-m)

Fluid-like 1.15 1704.5 0.29 1.0 1.00

Clay-Silt 1.60 1515.0 0.50 100.0 1.00

Sand 2.00 1800.0 0.70 600.0 1.50

Basalt 2.60 5250.0 0.20 2500.0 0.50

Chalk 2.20 3200.0 0.10 1000.0 1.00
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TABLE 2. COMPARISON OF THE CALCULATED REAL PART OF THE TRAPPED EIGENVALUES

Mode# Rigid Model Soft Model Perturbation Exact Model

1 0.1044248 0.1035350 0.1041654 0.1040583

2 0.1020346 0.0998963 0.1012651 0.1014331

3 0.0970778 0.0935177 0.0963706 0.0960692

4 0.0891272 0.0837758

5 0.0772641 0.0692656

6 0.0591806 0.0456463

7 0.0232692
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